
z/OS Communications Server

APPC Application Suite Programming
Version 1 Release 2

SC31-8834-00

���

z/OS Communications Server

APPC Application Suite Programming
Version 1 Release 2

SC31-8834-00

���

Note:
Before using this information and the product it supports, be sure to read the general information under “Appendix E.
Notices” on page 171.

First Edition (October 2001)

This edition applies to Version 1 Release 2 of z/OS (program number 5694-A01) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM
representative or write to the IBM branch office serving your locality.

A form for your comments is provided at the back of this document. If the form has been removed, you may address
comments to:

IBM Corporation
Software Reengineering
Department G71A/ Bldg 503
Research Triangle Park, North Carolina 27709–9990
U.S.A.

If you prefer to send comments electronically, use one of the following methods:

Fax (USA and Canada):
1-800-227-5088

Internet e-mail:
usib2hpd@vnet.ibm.com

World Wide Web:
http://www.ibm.com/servers/eserver/zseries/zos

IBMLink:
CIBMORCF at RALVM17

IBM Mail Exchange:
tkinlaw@us.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Tables . vii

About This Book . ix
Where to Find More Information ix

Where to Find Related Information on the Internet ix
Licensed Documents . x
LookAt, an Online Message Help Facility x
How to Contact IBM® Service xi
z/OS Communications Server Information xi

Summary of Changes . xix

Part 1. APPC File Transfer Protocol (AFTP) Programming Interface 1

Chapter 1. API for APPC File Transfer Protocol 3
AFTP Defined Constants, Standard Types and Conventions 3

Defined Constants . 3
Standard Types . 3
Conventions . 4

Compiling the AFTP Application 5
MVS . 5
VM. 5

Overview of API Calls . 5
Create or Destroy an AFTP Connection Object 6
Establish a Connection to the AFTP Server Computer 6
Query Connection Characteristics 7
Transfer Files . 7
Specify File Transfer Characteristics 7
Query File Transfer Characteristics 8
List Files on the AFTP Server Computer 8
List Files on the AFTP Client Computer 9
Perform Directory Manipulation 9
Perform File Manipulation . 10
Query System Information . 10
Generate Message Strings 10
Control Trace Information . 10
Miscellaneous . 11

Chapter 2. AFTP API Call Reference 13
aftp_change_dir . 14
aftp_close. 16
aftp_connect . 17
aftp_create . 18
aftp_create_dir . 19
aftp_delete . 21
aftp_destroy . 23
aftp_dir_close . 24
aftp_dir_open . 25
aftp_dir_read . 27
aftp_extract_allocation_size . 30
aftp_extract_block_size . 31
aftp_extract_data_type . 32
aftp_extract_date_mode . 33

© Copyright IBM Corp. 1994, 2001 iii

aftp_extract_destination. 34
aftp_extract_mode_name . 36
aftp_extract_partner_LU_name 38
aftp_extract_password . 40
aftp_extract_record_format . 42
aftp_extract_record_length . 44
aftp_extract_security_type . 45
aftp_extract_tp_name . 47
aftp_extract_trace_level. 49
aftp_extract_userid . 50
aftp_extract_write_mode . 52
aftp_format_error . 53
aftp_get_data_type_string . 55
aftp_get_date_mode_string . 57
aftp_get_record_format_string 59
aftp_get_write_mode_string . 61
aftp_load_ini_file . 63
aftp_local_change_dir . 65
aftp_local_dir_close . 67
aftp_local_dir_open . 68
aftp_local_dir_read . 70
aftp_local_query_current_dir . 73
aftp_query_bytes_transferred 75
aftp_query_current_dir . 76
aftp_query_local_system_info 78
aftp_query_local_version . 80
aftp_query_system_info. 81
aftp_receive_file . 83
aftp_remove_dir . 85
aftp_rename . 87
aftp_send_file . 89
aftp_set_allocation_size . 91
aftp_set_block_size . 92
aftp_set_data_type . 93
aftp_set_date_mode . 95
aftp_set_destination . 96
aftp_set_mode_name . 98
aftp_set_password . 99
aftp_set_record_format . 101
aftp_set_record_length . 103
aftp_set_security_type. 104
aftp_set_tp_name . 106
aftp_set_trace_filename . 108
aftp_set_trace_level . 109
aftp_set_userid . 110
aftp_set_write_mode . 112

Chapter 3. AFTP Return Codes 113

Part 2. APPC Name Server (ANAME) Programming Interface 115

Chapter 4. API for the APPC NameServer 117
How the ANAME API Works 117
ANAME Defined Constants, Standard Types, and Conventions 117

Defined Constants . 117
Standard Types . 118

iv z/OS V1R2.0 CS: APPC Application Suite Programming

Conventions . 118
Compiling the ANAME Application 119

MVS . 119
VM . 119

Overview of API Calls . 120
Create or Destroy an ANAME Connection Object 120
Set Values in the Connection Object 120
Set Values in the Data Object 120
Add a Record to the Database 121
Remove Records from the Database 121
Obtain Records from the Database 121
Access Values in Returned Records 122
Obtain Error Information . 122
Turn Tracing On and Off . 122
Use System Administrator Functions 122

Chapter 5. ANAME API Call Reference 123
aname_create. 124
aname_delete . 125
aname_destroy . 126
aname_extract_fqlu_name . 127
aname_extract_group_name 129
aname_extract_tp_name . 131
aname_extract_user_name . 133
aname_format_error . 135
aname_query . 137
aname_receive . 138
aname_register . 139
aname_set_destination . 140
aname_set_duplicate_register 141
aname_set_fqlu_name . 143
aname_set_group_name . 145
aname_set_tp_name . 146
aname_set_trace_filename . 147
aname_set_trace_level . 148
aname_set_user_name . 149

Chapter 6. ANAME Return Codes 151

Part 3. Appendixes . 153

Appendix A. Entry Point Mappings 155

Appendix B. Sample Program for AFTP API 157

Appendix C. Sample Program for ANAME API 161

Appendix D. Information Apars 169
IP Information Apars . 169
SNA Information Apars . 170

Appendix E. Notices . 171
Trademarks. 174

Index . 177

Contents v

vi z/OS V1R2.0 CS: APPC Application Suite Programming

Tables

1. AFTP Size Constants . 3
2. AFTP Standard Types . 4
3. ANAME Size Constants . 118
4. ANAME Standard Types. 118
5. AFTP API Call Mappings . 155
6. ANAME API Call Mappings . 156
7. IP Information Apars . 169
8. SNA Information Apars . 170

© Copyright IBM Corp. 1994, 2001 vii

viii z/OS V1R2.0 CS: APPC Application Suite Programming

About This Book

The APPC Application Suite provides application program interfaces (APIs) to its
APPC File Transfer Protocol (AFTP) functions and its APPC Name Server (ANAME)
functions. This book provides the information you will need to write an application
program to implement AFTP and ANAME client functions.

This book is written for application programmers. It assumes that you are familiar
with writing C language applications.

Although the APPC Application Suite API is based on common programming
interface for communications (CPI-C) and advanced program-to-program
communications (APPC), you do not necessarily need to know these concepts to
successfully write applications based on this API.

Use this book as a reference to identity and explain the various AFTP and ANAME
API calls, call parameters, and line flows.

Where to Find More Information
This section contains:

v Pointers to information available on the Internet

v Information about licensed documentation

v Information about LookAt, the online message tool

v A set of tables that describes the books in the z/OS Communications Server
(z/OS CS) library, along with related publications

Where to Find Related Information on the Internet
Home Page Web address
z/OS http://www.ibm.com/servers/eserver/zseries/zos/
z/OS Internet Library

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
IBM Communications Server product

http://www.software.ibm.com/network/commserver/
IBM Communications Server support

http://www.software.ibm.com/network/commserver/support/
IBM Systems Center publications

http://www.redbooks.ibm.com/
IBM Systems Center flashes

http://www-1.ibm.com/support/techdocs/atsmastr.nsf
VTAM and TCP/IP

http://www.software.ibm.com/network/commserver/about/csos390.html
IBM http://www.ibm.com
RFC http://www.ietf.org/rfc.html

Information about Web addresses can also be found in informational APAR II11334.

DNS Web Sites
For information about DNS, see the following Web sites:

USENET news groups:
comp.protocols.dns.bind

For BIND mailing lists, see:

© Copyright IBM Corp. 1994, 2001 ix

http://www.ibm.com/servers/eserver/zseries/zos/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.ibm.com/redbooks
http://www.ibm.com/support/techdocs
http://www.software.ibm.com/network/commserver/about/csos390.html
http://www.ibm.com
http://www.rfc-editor.org/rfc.html

v http://www.isc.org/ml-archives/

– BIND Users

- Subscribe by sending mail to bind-users-request@isc.org

- Submit questions or answers to this forum by sending mail to
bind-users@isc.org

– BIND 9 Users (Note: This list may not be maintained indefinitely.)

- Subscribe by sending mail to bind9-users-request@isc.org

- Submit questions or answers to this forum by sending mail to
bind9-users@isc.org

For definitions of the terms and abbreviations used in this book, you can view or
download the latest IBM Glossary of Computing Terms at the following Web
address:

http://www.ibm.com/ibm/terminology

Note: Any pointers in this publication to Web sites are provided for convenience
only and do not in any manner serve as an endorsement of these Web sites.

Licensed Documents
z/OS Communications Server licensed documentation in PDF format is available on
the Internet at the IBM Resource Link Web site at
http://www.ibm.com/servers/resourcelink. Licensed books are available only to
customers with a z/OS Communications Server license. Access to these books
requires an IBM Resource Link Web user ID and password, and a key code. With
your z/OS Communications Server order, you received a memo that includes this
key code. To obtain your IBM Resource Link Web user ID and password, log on to
http://www.ibm.com/servers/resourcelink. To register for access to the z/OS licensed
books perform the following steps:

1. Log on to Resource Link using your Resource Link user ID and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code, you will receive confirmation that your request
is being processed. After your request is processed, you will receive an e-mail
confirmation.

You cannot access the z/OS licensed books unless you have registered for access
to them and received an e-mail confirmation informing you that your request has
been processed. To access the licensed books:

1. Log on to Resource Link using your Resource Link user ID and password.

2. Click on Library.

3. Click on zSeries.

4. Click on Software.

5. Click on z/OS Communications Server.

6. Access the licensed book by selecting the appropriate element.

LookAt, an Online Message Help Facility
LookAt is an online facility that allows you to look up explanations for z/OS CS
messages and system abends.

x z/OS V1R2.0 CS: APPC Application Suite Programming

http://www.ibm.com/ibm/terminology
www.ibm.com/servers/resourcelink
www.ibm.com/servers/resourcelink

Using LookAt to find information is faster than a conventional search because
LookAt goes directly to the explanation.

LookAt can be accessed from the Internet or from a TSO command line.

To use LookAt as a TSO command, LookAt must be installed on your host system.
You can obtain the LookAt code for TSO from the LookAt Web site by clicking on
News and Help or from the z/OS V1R2 Collection, SK3T-4269.

To find a message explanation from a TSO command line, simply enter
lookat+message ID, as in the following example:
lookat ezz8477i

This results in direct access to the message explanation for message EZZ8477I.

You can use LookAt on the Internet at the following Web site:
www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To find a message explanation from the LookAt Web site, simply enter the message
ID. You can select the release, if applicable.

How to Contact IBM® Service
For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-237-5511).
You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m. –
5:00 p.m., local customer time).

Outside of the United States or Puerto Rico, contact your local IBM representative
or your authorized IBM supplier.

z/OS Communications Server Information
This section contains descriptions of the books in the z/OS Communications Server
library.

z/OS Communications Server publications are available:

v Online at the z/OS Internet Library web page at
http://www.ibm.com/servers/eserver/zseries/zos/

v In hardcopy and softcopy

v In softcopy only

Softcopy Information
Softcopy publications are available in the following collections:

Titles Order
Number

Description

z/OS V1R2 Collection SK3T-4269 This is the CD collection shipped with the z/OS product. It includes
the libraries for z/OS V1R2, in both BookManager and PDF formats.

z/OS Software Products
Collection

SK3T-4270 This CD includes, in both BookManager and PDF formats, the
libraries of z/OS software products that run on z/OS but are not
elements and features, as well as the Getting Started with Parallel
Sysplex bookshelf.

About This Book xi

www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/eserver/zseries/zos/

Titles Order
Number

Description

z/OS V1R2 and Software
Products DVD Collection

SK3T-4271 This collection includes the libraries of z/OS (the element and
feature libraries) and the libraries for z/OS software products in both
BookManager and PDF format. This collection combines SK3T-4269
and SK3T-4270.

z/OS Licensed Product Library SK3T-4307 This CD includes the licensed books in both BookManager and PDF
format.

System Center Publication
IBM S/390 Redbooks
Collection

SK2T-2177 This collection contains over 300 ITSO redbooks that apply to the
S/390 platform and to host networking arranged into subject
bookshelves.

z/OS Communications Server Library
The following abbreviations follow each order number in the tables below.

HC/SC — Both hardcopy and softcopy are available.

SC — Only softcopy is available. These books are available on the CD Rom
accompanying z/OS (SK3T-4269 or SK3T-4307). Unlicensed books can be viewed
at the z/OS Internet library site.

Updates to books are available on RETAIN and in the document called OS/390
DOC APARs and ++HOLD DOC data which can be found at
http://www.s390.ibm.com/os390/bkserv/ new_tech_info.html. See “Appendix D.
Information Apars” on page 169 for a list of the books and the informational apars
(info apars) associated with them.

Planning and Migration:

Title Number Format Description

z/OS Communications
Server: SNA Migration

GC31-8774 HC/SC This book is intended to help you plan for SNA, whether
you are migrating from a previous version or installing
SNA for the first time. This book also identifies the
optional and required modifications needed to enable
you to use the enhanced functions provided with SNA.

z/OS Communications
Server: IP Migration

GC31-8773 HC/SC This book is intended to help you plan for TCP/IP
Services, whether you are migrating from a previous
version or installing IP for the first time. This book also
identifies the optional and required modifications needed
to enable you to use the enhanced functions provided
with TCP/IP Services.

Resource Definition, Configuration, and Tuning:

Title Number Format Description

z/OS Communications
Server: IP Configuration
Guide

SC31-8775 HC/SC This book describes the major concepts involved in
understanding and configuring an IP network. Familiarity
with the z/OS operating system, IP protocols, z/OS
UNIX System Services, and IBM Time Sharing Option
(TSO) is recommended. Use this book in conjunction
with the z/OS Communications Server: IP Configuration
Reference.

xii z/OS V1R2.0 CS: APPC Application Suite Programming

http://www.s390.ibm.com/os390/bkserv/new_tech_info.html

Title Number Format Description

z/OS Communications
Server: IP Configuration
Reference

SC31-8776 HC/SC This book presents information for people who want to
administer and maintain IP. Use this book in conjunction
with the z/OS Communications Server: IP Configuration
Guide. The information in this book includes:

v TCP/IP configuration data sets

v Configuration statements

v Translation tables

v SMF records

v Protocol number and port assignments

z/OS Communications
Server: SNA Network
Implementation Guide

SC31-8777 HC/SC This book presents the major concepts involved in
implementing an SNA network. Use this book in
conjunction with the z/OS Communications Server: SNA
Resource Definition Reference.

z/OS Communications
Server: SNA Resource
Definition Reference

SC31-8778 HC/SC This book describes each SNA definition statement,
start option, and macroinstruction for user tables. It also
describes NCP definition statements that affect
SNA.Use this book in conjunction with the z/OS
Communications Server: SNA Network Implementation
Guide.

z/OS Communications
Server: SNA Resource
Definition Samples

SC31-8836 SC This book contains sample definitions to help you
implement SNA functions in your networks, and includes
sample major node definitions.

z/OS Communications
Server: AnyNet SNA over
TCP/IP

SC31-8832 SC This guide provides information to help you install,
configure, use, and diagnose SNA over TCP/IP.

z/OS Communications:
Server AnyNet Sockets over
SNA

SC31-8831 SC This guide provides information to help you install,
configure, use, and diagnose sockets over SNA. It also
provides information to help you prepare application
programs to use sockets over SNA.

Operation:

Title Number Format Description

z/OS Communications
Server: IP User’s Guide and
Commands

SC31-8780 HC/SC This book describes how to use TCP/IP applications. It
contains requests that allow a user to: log on to a
remote host using Telnet, transfer data sets using FTP,
send and receive electronic mail, print on remote
printers, and authenticate network users.

z/OS Communications
Server: IP System
Administrator’s Commands

SC31-8781 HC/SC This book describes the functions and commands
helpful in configuring or monitoring your system. It
contains system administrator’s commands, such as
NETSTAT, PING, TRACERTE and their UNIX
counterparts. It also includes TSO and MVS commands
commonly used during the IP configuration process.

z/OS Communications
Server: SNA Operation

SC31-8779 HC/SC This book serves as a reference for programmers and
operators requiring detailed information about specific
operator commands.

z/OS Communications
Server: Operations Quick
Reference

SX75-0124 HC/SC This book contains essential information about SNA and
IP commands.

Customization:

About This Book xiii

Title Number Format Description

z/OS Commmunications
Server: SNA Customization

LY43-0092 SC This book enables you to customize SNA, and includes
the following:

v Communication network management (CNM) routing
table

v Logon-interpret routine requirements

v Logon manager installation-wide exit routine for the
CLU search exit

v TSO/SNA installation-wide exit routines

v SNA installation-wide exit routines

z/OS Communications
Server: IP Network Print
Facility

SC31-8833 SC This book is for system programmers and network
administrators who need to prepare their network to
route SNA, JES2, or JES3 printer output to remote
printers using TCP/IP Services.

Writing Application Programs:

Title Number Format Description

z/OS Communications
Server: IP Application
Programming Interface
Guide

SC31-8788 SC This book describes the syntax and semantics of
program source code necessary to write your own
application programming interface (API) into TCP/IP.
You can use this interface as the communication base
for writing your own client or server application. You can
also use this book to adapt your existing applications to
communicate with each other using sockets over
TCP/IP.

z/OS Communications
Server: IP CICS Sockets
Guide

SC31-8807 SC This book is for people who want to set up, write
application programs for, and diagnose problems with
the socket interface for CICS using z/OS TCP/IP.

z/OS Communications
Server: IP IMS Sockets
Guide

SC31-8830 SC This book is for programmers who want application
programs that use the IMS TCP/IP application
development services provided by IBM’s TCP/IP
Services.

z/OS Communications
Server: IP Programmer’s
Reference

SC31-8787 SC This book describes the syntax and semantics of a set
of high-level application functions that you can use to
program your own applications in a TCP/IP
environment. These functions provide support for
application facilities, such as user authentication,
distributed databases, distributed processing, network
management, and device sharing. Familiarity with the
z/OS operating system, TCP/IP protocols, and IBM Time
Sharing Option (TSO) is recommended.

z/OS Communications
Server: SNA Programming

SC31-8829 SC This book describes how to use SNA macroinstructions
to send data to and receive data from (1) a terminal in
either the same or a different domain, or (2) another
application program in either the same or a different
domain.

z/OS Communications
Server: SNA Programmers
LU 6.2 Guide

SC31-8811 SC This book describes how to use the SNA LU 6.2
application programming interface for host application
programs. This book applies to programs that use only
LU 6.2 sessions or that use LU 6.2 sessions along with
other session types. (Only LU 6.2 sessions are covered
in this book.)

xiv z/OS V1R2.0 CS: APPC Application Suite Programming

Title Number Format Description

z/OS Communications
Server: SNA Programmers
LU 6.2 Reference

SC31-8810 SC This book provides reference material for the SNA LU
6.2 programming interface for host application
programs.

z/OS Communications
Server: CSM Guide

SC31-8808 SC This book describes how applications use the
communications storage manager.

z/OS Communications
Server: CMIP Services and
Topology Agent Guide

SC31-8828 SC This book describes the Common Management
Information Protocol (CMIP) programming interface for
application programmers to use in coding CMIP
application programs. The book provides guide and
reference information about CMIP services and the SNA
topology agent.

Diagnosis:

Title Number Format Description

z/OS Communications
Server: IP Diagnosis

GC31-8782 HC/SC This book explains how to diagnose TCP/IP problems
and how to determine whether a specific problem is in
the TCP/IP product code. It explains how to gather
information for and describe problems to the IBM
Software Support Center.

z/OS Communications
Server: SNA Diagnosis V1
Techniques and Procedures
and z/OS Communications
Server: SNA Diagnosis V2
FFST Dumps and the VIT

LY43-0088

LY43-0089

HC/SC These books help you identify an SNA problem, classify
it, and collect information about it before you call the
IBM Support Center. The information collected includes
traces, dumps, and other problem documentation.

z/OS Communications
Server: SNA Data Areas
Volume 1 and z/OS
Communications Server:
SNA Data Areas Volume 2

LY43-0090

LY43-0091

SC These books describe SNA data areas and can be used
to read an SNA dump. They are intended for IBM
programming service representatives and customer
personnel who are diagnosing problems with SNA.

Messages and Codes:

Title Number Format Description

z/OS Communications
Server: SNA Messages

SC31-8790 HC/SC This book describes the ELM, IKT, IST, ISU, IUT, IVT,
and USS messages. Other information in this book
includes:

v Command and RU types in SNA messages

v Node and ID types in SNA messages

v Supplemental message-related information

z/OS Communications
Server: IP Messages
Volume 1 (EZA)

SC31-8783 HC/SC This volume contains TCP/IP messages beginning with
EZA.

z/OS Communications
Server: IP Messages
Volume 2 (EZB)

SC31-8784 HC/SC This volume contains TCP/IP messages beginning with
EZB.

z/OS Communications
Server: IP Messages
Volume 3 (EZY)

SC31-8785 HC/SC This volume contains TCP/IP messages beginning with
EZY.

About This Book xv

Title Number Format Description

z/OS Communications
Server: IP Messages
Volume 4 (EZZ-SNM)

SC31-8786 HC/SC This volume contains TCP/IP messages beginning with
EZZ and SNM.

z/OS Communications
Server: IP and SNA Codes

SC31-8791 HC/SC This book describes codes and other information that
appear in z/OS Communications Server messages.

APPC Application Suite:

Title Number Format Description

z/OS Communications
Server: APPC Application
Suite User’s Guide

GC31-8809 SC This book documents the end-user interface (concepts,
commands, and messages) for the AFTP, ANAME, and
APING facilities of the APPC application suite. Although
its primary audience is the end user, administrators and
application programmers may also find it useful.

z/OS Communications
Server APPC Application
Suite Administration

SC31-8835 SC This book contains the information that administrators
need to configure the APPC application suite and to
manage the APING, ANAME, AFTP, and A3270 servers.

z/OS Communications
Serverz: APPC Application
Suite Programming

SC31-8834 SC This book provides the information application
programmers need to add the functions of the AFTP
and ANAME APIs to their application programs.

Redbooks
The following Redbooks may help you as you implement z/OS Communications
Server.

Title Number

TCP/IP Tutorial and Technical Overview GG24–3376

SNA and TCP/IP Integration SG24–5291

IBM Communication Server for OS/390 V2R10 TCP/IP Implementation Guide:
Volume 1: Configuration and Routing

SG24–5227

IBM Communication Server for OS/390 V2R10 TCP/IP Implementation Guide:
Volume 2: UNIX Applications

SG24–5228

IBM Communication Server for OS/390 V2R10 TCP/IP Implementation Guide:
Volume 3: MVS Applications

SG24–5229

OS/390 Secureway Communication Server V2R8 TCP/IP Guide to Enhancements SG24–5631

TCP/IP in a Sysplex SG24–5235

Managing OS/390 TCP/IP with SNMP SG24–5866

Security in OS/390–based TCP/IP Networks SG24–5383

IP Network Design Guide SG24–2580

Related Information
For information about z/OS products, refer to z/OS Information Roadmap
(SA22-7500). The Roadmap describes what level of documents are supplied with
each release of z/OS Communications Server, as well as describing each z/OS
publication.

The table below lists books that may be helpful to readers.

xvi z/OS V1R2.0 CS: APPC Application Suite Programming

Title Number

z/OS SecureWay Security Server Firewall Technologies SC24-5922

S/390: OSA-Express Customer’s Guide and Reference SA22-7403

z/OS MVS Diagnosis: Procedures GA22-7587

z/OS MVS Diagnosis: Reference GA22-7588

z/OS MVS Diagnosis: Tools and Service Aids GA22-7589

Determining If a Publication Is Current
As needed, IBM updates its publications with new and changed information. For a
given publication, updates to the hardcopy and associated BookManager softcopy
are usually available at the same time. Sometimes, however, the updates to
hardcopy and softcopy are available at different times. Here is how to determine if
you are looking at the most current copy of a publication:

1. At the end of a publication’s order number there is a dash followed by two
digits, often referred to as the dash level. A publication with a higher dash level
is more current than one with a lower dash level. For example, in the publication
order number GC28-1747-07, the dash level 07 means that the publication is
more current than previous levels, such as 05 or 04.

2. If a hardcopy publication and a softcopy publication have the same dash level, it
is possible that the softcopy publication is more current than the hardcopy
publication. Check the dates shown in the Summary of Changes. The softcopy
publication might have a more recently dated Summary of Changes than the
hardcopy publication.

3. To compare softcopy publications, you can check the last two characters of the
publication’s filename (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM
booklet and the readme files, there is an asterisk (*) that indicates whether a
publication is new or changed.

About This Book xvii

xviii z/OS V1R2.0 CS: APPC Application Suite Programming

Summary of Changes

Summary of Changes
for SC31-8834-00
z/OS Version 1 Release 2

This book contains information previously presented in OS/390 V2R5 eNetwork
Communications Server: APPC Applications Suite Programming, SC31-8621.

This book contains minor terminology, maintenance, and editorial changes.
Technical changes or additions to the text and illustrations are indicated by a
vertical line to the left of the change.

© Copyright IBM Corp. 1994, 2001 xix

|
|
|

|
|

|
|
|

xx z/OS V1R2.0 CS: APPC Application Suite Programming

Part 1. APPC File Transfer Protocol (AFTP) Programming
Interface

© Copyright IBM Corp. 1994, 2001 1

2 z/OS V1R2.0 CS: APPC Application Suite Programming

Chapter 1. API for APPC File Transfer Protocol

The APPC File Transfer Protocol (AFTP) application programming interface (API) is
a set of C routines that provides APPC file transfer capabilities. This API makes file
transfer programming easier by allowing you to access routines that will interact
with any AFTP server.

The AFTP API adheres to the AFTP line flow standards. All AFTP client applications
will send the same set of line flows over the network to the AFTP server.

AFTP Defined Constants, Standard Types and Conventions
This section describes constants, types and conventions for use in the AFTP API
that are not standard to C programming.

Defined Constants
AFTP constant definitions have been created for the sizes of the buffers that are
passed across the API. All buffers of the specified type must be at least the size of
the defined constant to guarantee the requested call will not fail with a buffer size
error.

The constants are defined in the header file for the AFTP API.

Table 1. AFTP Size Constants

Constant Minimum Buffer Size For Value

AFTP_DATA_TYPE_SIZE data_type_size 64

AFTP_DATE_MODE_SIZE date_mode_size 64

AFTP_FILE_NAME_SIZE dir_entry_size or dir_entry_size or
path_buffer_length

512

AFTP_FQLU_NAME_SIZE destination_size or
partner_LU_name_size

64

AFTP_MESSAGE_SIZE error_str_size 2048

AFTP_MODE_NAME_SIZE mode_name_size 8

AFTP_PASSWORD_SIZE password_size 10

AFTP_RECORD_FORMAT_SIZE record_format_size 64

AFTP_SYSTEM_INFO_SIZE system_info_size 512

AFTP_TP_NAME_SIZE tp_name_size 64

AFTP_USERID_SIZE userid_size 10

AFTP_WRITE_MODE_SIZE write_mode_size 64

Standard Types
Type definitions are available for many parameters to the AFTP API calls. For
example, the AFTP type AFTP_LENGTH_TYPE is an alias for the C type unsigned
long.

Use the AFTP types instead of the corresponding C types. Doing so will protect you
from changes to the parameters in future releases. If you have used the AFTP

© Copyright IBM Corp. 1994, 2001 3

types, you will only need to recompile your code to use the new API definitions. If
you have used the C types, you will need to modify your program source to reflect
changes to the new C types.

The AFTP API avoids complex structures and pointers to structures for type
definitions. These complex structures might not be supported in all languages. The
only exception is the string construct which is found in many languages.

Table 2. AFTP Standard Types

Type Description

AFTP_HANDLE_TYPE The AFTP connection object id

AFTP_ALLOCATION_SIZE_TYPE The file allocation size

AFTP_BLOCK_SIZE_TYPE The file block size

AFTP_BOOLEAN_TYPE A boolean (FALSE=0, TRUE=1) type

AFTP_DATA_TYPE_TYPE The file data types that can be transferred

AFTP_DATE_MODE_TYPE The date mode used for transferred files

AFTP_DETAIL_LEVEL_TYPE Amount of information to be output when
AFTP generates error messages

AFTP_FILE_TYPE_TYPE The kind of a file (directory/file) listed by
AFTP

AFTP_INFO_LEVEL_TYPE The amount of information listed for a file by
AFTP

AFTP_LENGTH_TYPE The size of input buffers, and the actual
returned length of buffers in AFTP

AFTP_RETURN_CODE_TYPE The return codes output by AFTP

AFTP_RECORD_FORMAT_TYPE The file record formats

AFTP_RECORD_LENGTH_TYPE The file record length

AFTP_SECURITY_TYPE The APPC security types

AFTP_TRACE_LEVEL_TYPE The levels of tracing information output by
AFTP

AFTP_VERSION_TYPE The AFTP program version numbers

AFTP_WRITE_MODE_TYPE The different ways that AFTP can write to a
file

Conventions

Null-Terminated Strings
The AFTP API does not require input strings to be null-terminated. The AFTP API
also does not guarantee that the output strings are null terminated. The return size
does not include the null terminator in the size, if there is one.

The C programmer should be aware of the fact that strings are handled differently
within AFTP than they are in the C standard library. All API calls receiving strings as
input require both the string itself, and the length of the string. The strlen() function
can be used for this. The null terminator must not be counted as part of the string
length. API calls which output strings require three string related parameters:

v The string.

v The length of the string buffer that has been allocated by the calling program.
Both of these are input to the API, with the string being modified.

4 z/OS V1R2.0 CS: APPC Application Suite Programming

v The actual length of the string that is output. AFTP output strings are not null
terminated. In order for the C programmer to use them as standard C strings, a
null character must be added to the end of the string.

AFTP_ENTRY
The AFTP API calls do not return a value. Rather, the return code parameter is set
to indicate the success or failure of the call. The programmer should check the
return code parameter after each call and handle error values appropriately.

The C keyword void is not used for entry points in the AFTP API. Instead,
AFTP_ENTRY has been defined. AFTP_ENTRY is defined differently depending on
the operating system the AFTP client will be created on.

AFTP_PTR
The C pointer indicator ’*’ is not used in the AFTP API. Instead, AFTP_PTR has
been defined. AFTP_PTR is defined differently depending on the operating system
the AFTP client will be created on.

Compiling the AFTP Application
The following sections describe compiling an AFTP application on MVS and VM.

MVS
To develop an application that uses the AFTP API on MVS, follow these steps:

Note: This process assumes all AFTP program files have been successfully
installed with the provided JCL for installing AFTP.

1. Include this header file in your source modules: APPFFTP.

2. Define CM_MVS when you compile your source.

3. Edit the APPFAPIJ JCL file and make the changes indicated in the prolog
comments at the top of the file.

4. Submit the APPFAPIJ JCL.

VM
To access the AFTP API calls from your application you must:

1. Include this header file in your source modules: APPFFTP H.

2. Define CM_VM when you compile your source.

3. Add APPFAPIL TXTLIB to your GLOBAL TXTLIB statement. All textdecks are
packaged into this textlib.

Overview of API Calls
The calls of the AFTP API can be organized into the following categories:
v Create or destroy an AFTP connection object
v Establish a connection to the AFTP server
v Query connection characteristics
v Transfer files
v Specify file transfer characteristics
v Query file transfer characteristics
v List files on the AFTP server
v List files on the AFTP client
v Perform directory manipulation
v Perform file manipulation
v Query system information

Chapter 1. API for APPC File Transfer Protocol 5

v Generate message strings
v Control trace information
v Miscellaneous

Create or Destroy an AFTP Connection Object
The connection object represents an object-oriented approach to AFTP. An AFTP
connection object represents a connection (not necessarily active) to a partner
computer. Many of the other AFTP API calls require an AFTP connection object as
input. When the program has finished using AFTP API calls, it should destroy the
connection object.

aftp_create()
Creates an AFTP connection object and assigns a unique identifier to it.
The connection object is accessed by its connection id. The connection
object is never automatically destroyed. This allows you to connect to an
AFTP server once, or reconnect numerous times using the same AFTP
connection object.

aftp_destroy()
Destroys the AFTP connection object and recovers all resources associated
with it. Once the AFTP connection object has been destroyed, that object
must not be used again. If you need a connection object again, create
another one.

Establish a Connection to the AFTP Server Computer
In order for the AFTP client to communicate with an AFTP server, certain
communications parameters must be set. Most of the communications parameters
have default values. The destination does not have a default value and must be set
explicitly. Once the parameters are set as desired, the connection to the server can
take place.

These are the API calls you use to manage your connection to the AFTP server:

aftp_close()
Closes a connection to the AFTP server once processing is complete.

aftp_connect()
Establishes the connection to the AFTP server for file transfer.

aftp_set_destination()
Identifies the server computer name to which the AFTP connection will be
established. This server computer will run the AFTP server program.

aftp_set_mode_name()
Sets the mode name to be used for this connection. The default mode
name is #BATCH.

aftp_set_password()
Sets the password used for APPC security type PROGRAM. Using this call
automatically sets the security type to PROGRAM.

aftp_set_security_type()
Sets the APPC security used for the AFTP connection to the AFTP server.

aftp_set_tp_name()
Sets the transaction program name to be used for this connection. The
default transaction program name is AFTPD.

6 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_set_userid()
Sets the user ID used for APPC security type PROGRAM. Using this call
automatically sets the security type to PROGRAM.

Query Connection Characteristics
Use these API calls to query the characteristics of the connection to the AFTP
server.

aftp_extract_destination()
Extracts the identity of the server computer on which the AFTP server runs.

aftp_extract_mode_name()
Extracts the mode name used for this connection.

aftp_extract_partner_LU_name()
Extracts the fully qualified LU name of the AFTP server computer.

aftp_extract_password()
Extracts the password used for this connection.

aftp_extract_security_type()
Extracts the security type used for this connection.

aftp_extract_tp_name()
Extracts the transaction program name used for this connection.

aftp_extract_userid()
Extracts the user ID used for this connection.

Transfer Files
The primary purpose of the file transfer protocol is to exchange files between the
AFTP client and AFTP server programs. Through the API, the AFTP client program
can send a file to the AFTP server, and receive a file from the AFTP server.

Use these API calls to transfer files between the client and server.

aftp_query_bytes_transferred()
Outputs the number of bytes transferred by either the aftp_send_file() or
aftp_receive_file() calls.

aftp_receive_file()
Receives a single file from the AFTP server.

aftp_send_file()
Sends a single file to the AFTP server.

Specify File Transfer Characteristics
AFTP supports a variety of file transfer attributes. Both text and binary files can be
transferred. The data structure of the files can be set by the programmer for
mainframe applications. This allows several variations of record-based files to be
transferred.

Use these API calls to specify file transfer characteristics.

aftp_set_allocation_size()
Sets the amount of space allocated for the file which is being written.

aftp_set_block_size()
Sets the size of a data block for the file which is being written.

Chapter 1. API for APPC File Transfer Protocol 7

aftp_set_data_type()
Sets the way in which the data transmitted is interpreted.

aftp_set_date_mode()
Sets how the date will be represented when the file is written (either
received or sent). The new file can use the current date/time stamp or the
date/time stamp of the original file.

aftp_set_record_format()
Sets the record format of the file transmitted.

aftp_set_record_length()
Sets the length of the file record transmitted.

aftp_set_write_mode()
Sets the type of write operation which will occur when the transmitted file is
written (either received or sent).

Query File Transfer Characteristics
Use these API calls to query the file transfer attributes.

aftp_extract_allocation_size()
Extracts the amount of space allocated for the file which is being
transmitted.

aftp_extract_block_size()
Extracts the size of a data block for the file which is being transmitted.

aftp_extract_data_type()
Extracts the way in which the transmitted data is interpreted.

aftp_extract_date_mode()
Extracts how the date will be represented when the file is written.

aftp_extract_record_format()
Extracts the record format of the file transmitted.

aftp_extract_record_length()
Extracts the length of the file record transmitted.

aftp_extract_write_mode()
Extracts the type of write operation which will occur when the transmitted
file is written.

List Files on the AFTP Server Computer
File list facilities can be used to support wildcard transfers from the AFTP server.
The wildcard processing is kept off the send and receive calls to make the calls as
portable as possible. Obtaining a complete directory listing requires three calls:
open, read, and close.

aftp_dir_close()
Closes an active directory listing on the AFTP server.

aftp_dir_open()
Begins a directory listing operation on the AFTP server. The directory open
call sets up the search specifications:

v File specification which is to be matched

v Whether directories, files, or both should be included in the search

v The type of information desired (file names only or file names with
attributes)

8 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_dir_read()
Gets the next file from the directory listing on the AFTP server. A text string
describing the file will be returned. The format of the information returned
depends on the parameters specified on the aftp_dir_open() call.

List Files on the AFTP Client Computer
File list facilities can be used to support wildcard transfers to the AFTP server. The
wildcard processing is kept off the send and receive primitives to make the
primitives as portable as possible. Obtaining a complete directory listing requires
three calls: open, read, and close.

aftp_local_dir_close()
Closes an active directory listing on the AFTP client.

aftp_local_dir_open()
Begins a directory listing operation on the AFTP client. The directory open
call sets up the search specifications:

v File specification to be matched

v Whether directories, files, or both should be included in the search

v The type of information desired (file names only or file names with
attributes)

aftp_local_dir_read()
Gets the next file from the directory listing on the AFTP client. A text string
describing the file will be returned. The format of the information returned
depends upon the parameters specified on the aftp_local_dir_open() call.

Perform Directory Manipulation
AFTP provides methods of traversing and modifying the directory structure on the
AFTP server computer. It is possible to build recursive copy routines for entire
directory trees using these calls. AFTP also maintains the current directory on the
AFTP server. This provides the user with a method of specifying a file name without
specifying the entire directory path to that file on the AFTP server.

Use these API calls to manage directories on the client and server.

aftp_change_dir()
Changes the current working directory on the AFTP server.

aftp_create_dir()
Makes a new directory on the AFTP server.

aftp_query_current_dir()
Outputs the current working directory on the AFTP server.

aftp_remove_dir()
Removes an existing directory on the AFTP server.

AFTP provides methods to query and traverse the directory structure on the
AFTP client computer. AFTP maintains the current directory on the AFTP
client. This provides the user with a method of specifying a file name
without specifying the entire directory path to that file on the AFTP client.

aftp_local_change_dir()
Changes the current working directory on the AFTP client.

aftp_local_query_current_dir()
Outputs the current working directory on the AFTP client.

Chapter 1. API for APPC File Transfer Protocol 9

Perform File Manipulation
The following two calls provide additional file functions which allow modifications to
files on the AFTP server without using the aftp_send_file() call. It is possible to
rename a file on the AFTP server computer as long as the rename does not cross
device boundaries. It is also possible to delete files on the AFTP server computer.

aftp_delete()
Deletes a file on the AFTP server.

aftp_rename()
Renames a file on the AFTP server.

Query System Information
The query system calls can be used to learn more information about the AFTP
client and AFTP server computers.

aftp_query_local_system_info()
Outputs a string describing the AFTP client operating system.

aftp_query_local_version()
Outputs the major and minor AFTP client version numbers.

aftp_query_system_info()
Outputs a string describing the AFTP server operating system.

Generate Message Strings
AFTP allows the caller to use consistent strings for AFTP transfer characteristics.
AFTP will output the string to use when queried. It is also possible to output
standard text messages for AFTP errors. The other API calls return an AFTP return
code which can be queried to determine if an error message should be output.

Use these API calls to get text strings to use in messages issued by your
application.

aftp_format_error()
Generates text output for the current AFTP error. This should be used to
output error information to the user when an AFTP call returns a bad return
code.

aftp_get_data_type_string()
Outputs the string corresponding to an input data type value.

aftp_get_date_mode_string()
Outputs the string corresponding to an input date mode value.

aftp_get_record_format_string()
Outputs the string corresponding to an input record format value.

aftp_get_write_mode_string()
Outputs the string corresponding to an input write mode value.

Control Trace Information
Use these API calls to control tracing of AFTP activity.

aftp_extract_trace_level()
Extracts the current trace level.

aftp_set_trace_filename()
Sets the name of the file to be used for trace output.

10 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_set_trace_level()
Sets the amount of trace data to be captured.

Miscellaneous
AFTP provides a method of loading the AFTP initialization file which contains user
permission and file mapping information.

aftp_load_ini_file()
Loads the AFTP initialization file into memory.

Chapter 1. API for APPC File Transfer Protocol 11

12 z/OS V1R2.0 CS: APPC Application Suite Programming

Chapter 2. AFTP API Call Reference

This chapter provides an alphabetical reference for all of the API calls for the APPC
File Transfer Protocol (AFTP). Program examples are provided for each call to
illustrate its use in a program.

© Copyright IBM Corp. 1994, 2001 13

aftp_change_dir
Use this call to change the current working directory on the AFTP server. A
connection to the AFTP server must be established before using this call.

Read the z/OS Communications Server: APPC Application Suite User’s Guide for
details on how the directory concept is handled for supported operating systems.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

directory
(input) The new current working directory name. The format of this name can
either be the native syntax on the AFTP server or the AFTP common naming
convention (described in the z/OS Communications Server: APPC Application
Suite User’s Guide). The directory specified can be either an absolute or a
relative path name.

length
(input) The length of the directory parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
/* The value used will vary based on platform:
* VM common naming: directory = "/d"
* VM native naming: directory = "/d"
* MVS PDS common naming: directory = "/user.clist/"
* MVS PDS native naming: directory = "'user.clist'"
* MVS data set prefix common: directory = "/user.qual.a."
* MVS data set prefix native: directory = "'user.qual.a.'"
* OS/2* common naming: directory = "/c:/os2"
* OS/2 native naming: directory = "c:\\os2"
*/
static unsigned char AFTP_PTR directory = "/user.clist/"; /* MVS */

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
* a connection to server, use: aftp_connect()
*/

/*
* Specify the new current working directory name
* using the COMMON name format.
*/

AFTP_ENTRY
aftp_change_dir(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR directory,
AFTP_LENGTH_TYPE length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

14 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_change_dir(
connection_id,
directory,
(AFTP_LENGTH_TYPE)strlen(directory),
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error changing AFTP directory.\n");

}
}

Line Flows
The directory name is sent to the AFTP server, and the call waits for a response
indicating the success or failure of the change directory operation.

Chapter 2. AFTP API Call Reference 15

aftp_close
Use this call to close an active connection. A connection to the AFTP server must
be established before using this call.

Format

Parameters
connection_id

(input) An AFTP object connection originally created with aftp_create().

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
* a connection to server, use: aftp_connect()
*/

aftp_close(connection_id, &aftp_rc);
if (aftp_rc != AFTP_RC_OK) {

fprintf(
stderr,
"Error on aftp_close(): %s\n",
aftp_rc);

}

Line Flows
The close operation forces a Deallocate(FLUSH) to flow to the server.

AFTP_ENTRY
aftp_close(

AFTP_HANDLE_TYPE connection_id,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

16 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_connect
Use this call to establish a connection to the AFTP server. You must identify the
destination of the AFTP server with the aftp_set_destination() call prior to issuing
this call.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
* a destination, use: aftp_set_destination()
*/

/*
* Establish a connection to the server
*/

aftp_connect(connection_id, &aftp_rc);
if (aftp_rc != AFTP_RC_OK) {

fprintf(
stderr,
"Error on aftp_connect(): %s\n",
aftp_rc);

}
}

Line Flows
v The aftp_connect() call will cause an Allocate to flow to the server.

v Once a conversation is established, an exchange of version numbers and
capabilities occurs between the client and the server. Therefore, this call does
not return until AFTP verifies that the server program is running correctly on the
remote system or an error occurs.

AFTP_ENTRY
aftp_connect(

AFTP_HANDLE_TYPE connection_id,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 17

aftp_create
Use this call to create an AFTP connection object which can be used to connect to
an AFTP server.

Format

Parameters
connection_id

(output) Handle of the AFTP connection object that was created by this call. All
subsequent AFTP calls must use a previously created AFTP connection object.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_RETURN_CODE_TYPE aftp_rc;
AFTP_HANDLE_TYPE connection_id;

/*
* There are no prerequisite calls for this call.
*/

/*
* Create the connection object that we will use for AFTP.
*/

aftp_create(connection_id, &aftp_rc);
if (aftp_rc != AFTP_RC_OK) {

fprintf(stderr, "Error creating an AFTP object.\n");
}

}

Line Flows
There are no line flows for this call.

AFTP_ENTRY
aftp_create(

AFTP_HANDLE_TYPE connection_id,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

18 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_create_dir
Use this call to create a new directory on the AFTP server. A connection to the
AFTP server must be established before using this call.

Platform Differences:

1. On VM, this call is not supported. If issued, the call fails with return code
AFTP_RC_FAIL_NO_RETRY.

2. On MVS, partitioned data sets act as the directory structure. This call creates a
partitioned data set with the name specified.

Read the z/OS Communications Server: APPC Application Suite User’s Guide for
details on how the directory concept is handled for supported operating systems.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

directory
(input) The name of the directory name to be created. The format of this name
can either be the native syntax on the AFTP server or the AFTP common
naming convention (described in the z/OS Communications Server: APPC
Application Suite User’s Guide). The directory specified can be either an
absolute or relative path name.

length
(input) The length of the directory parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;

/* The value used for filespec will vary based on platform:
* VM not supported
* MVS PDS common naming: directory="/user.clist/"
* MVS PDS native naming: directory="'user.clist'"
* OS/2 native naming: directory="d:\\newdir"
* OS/2 common naming: directory="/d:/newdir"
*/
static unsigned char AFTP_PTR directory = "/user.clist/";

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
* a connection to server, use: aftp_connect()

AFTP_ENTRY
aftp_create_dir(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR directory,
AFTP_LENGTH_TYPE length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 19

*/

aftp_create_dir(
connection_id,
directory,
(AFTP_LENGTH_TYPE)strlen(directory),
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error creating directory.\n");

}
}

Line Flows
The directory name is sent to the AFTP server and the call waits for a response
indicating the success or failure of the create directory operation.

20 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_delete
Use this call to delete a single file on the AFTP server. A connection to the AFTP
server must be established before using this call.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

filename
(input) The name of the file to be removed. The format of this name can either
be the native syntax on the AFTP server or the AFTP common naming
convention (described in the z/OS Communications Server: APPC Application
Suite User’s Guide). The file specified can contain either an absolute or relative
path name.

length
(input) The length of the filename parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;

/* The value used for filespec will vary based on platform:
* VM common naming: filespec="/a/foo*"
* VM native naming: filespec="foo*.*.a"
* MVS PDS common naming: filespec="/user.clist/foo*"
* MVS PDS native naming: filespec="'user.clist(foo*)'"
* MVS sequential common: filespec="/user.qual*.a*.**"
* MVS sequential native: filespec="'user.qual*.a*.**'"
*/
static unsigned char AFTP_PTR filespec = "/user.clist/foo*";

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
* a connection to server, use: aftp_connect()
*/

/*
* Delete a file
*/

aftp_delete(
connection_id,
filespec,
(AFTP_LENGTH_TYPE)strlen(filespec),

AFTP_ENTRY
aftp_delete(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR filename,
AFTP_LENGTH_TYPE length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 21

&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error deleting AFTP file.\n");

}

}

Line Flows
The file name is sent to the AFTP server and the call waits for a response
indicating the success or failure of the delete file operation.

22 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_destroy
Use this call to destroy an AFTP connection object. Once an AFTP connection
object is destroyed, it cannot be used again.

You should issue the aftp_close() call to end the connection before you issue this
call.

Format

Parameters
connection_id

(input) An AFTP connection object to be destroyed. This object was originally
created with aftp_create().

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_RETURN_CODE_TYPE aftp_rc;
AFTP_HANDLE_TYPE connection_id;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*
* If you have opened a connection with aftp_connect()
* you must also issue an aftp_close()
*/

aftp_destroy(connection_id, &aftp_rc);

}

Line Flows
There are no line flows for this call.

AFTP_ENTRY
aftp_destroy(

AFTP_HANDLE_TYPE connection_id,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 23

aftp_dir_close
Use this call to cancel a directory listing on the AFTP server that is in progress or
end a directory listing on the AFTP server after NO_MORE_ENTRIES has been
returned from an aftp_dir_read() call. A connection to the AFTP server must be
established before using this call. A directory listing on the AFTP server must be
started by calling aftp_dir_open() prior to calling this call.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
See “aftp_dir_read” on page 27 for a complete example showing the related calls:
aftp_dir_open, aftp_dir_read, and aftp_dir_close.

Line Flows
There are no line flows for this call.

AFTP_ENTRY
aftp_dir_close(

AFTP_HANDLE_TYPE connection_id,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

24 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_dir_open
Use this call to begin a directory listing and specify the file search parameters on
the AFTP server. The aftp_dir_read() call is used to read individual directory entries.
The aftp_dir_close() call is used to end the directory listing. A connection to the
AFTP server must be established before using this call.

Read the z/OS Communications Server: APPC Application Suite User’s Guide for
details on how the directory concept is handled for supported operating systems.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

filespec
(input) The search string which the server uses to generate the directory listing.
The files in the listing must match the search string. The format of this name
can either be the native syntax on the AFTP server or the AFTP common
naming convention (described in the z/OS Communications Server: APPC
Application Suite User’s Guide). The file specified can either be an absolute or
relative path name and can contain wildcard characters.

length
(input) The length of the filespec parameter in bytes.

file_type
(input) The type of information (directory names or file names) to be returned.
AFTP_FILE

Only file entries
AFTP_DIRECTORY

Only directory entries
AFTP_ALL_FILES

Both file and directory entries

info_level
(input) The level and format of information to be returned about each file or
directory entry.
AFTP_NATIVE_NAMES

Native names without attributes.
AFTP_NATIVE_ATTRIBUTES

Native names and native file attributes.

path
(output) The fully qualified directory name in which of all of the directory entries
exist. The actual directory entries will be returned when the aftp_dir_read() call

AFTP_ENTRY
aftp_dir_open(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR filespec,
AFTP_LENGTH_TYPE length,
AFTP_FILE_TYPE_TYPE file_type,
AFTP_INFO_LEVEL_TYPE info_level,
unsigned char AFTP_PTR path,
AFTP_LENGTH_TYPE path_buffer_length,
AFTP_LENGTH_TYPE AFTP_PTR path_returned_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 25

is used. The path can be used along with the returned directory entry filename
to create a fully qualified pathname to use on another AFTP file call.

Use the AFTP_FILE_NAME_SIZE constant to define the length of this buffer.
Add 1 to the size if you want to be able to add a null terminator to the text in
the buffer.

path_buffer_length
(input) The size in bytes of the buffer pointed to by the path parameter.

path_returned_length
(output) The number of bytes returned in the path parameter.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
See “aftp_dir_read” on page 27 for a complete example showing the related calls:
aftp_dir_open, aftp_dir_read, and aftp_dir_close.

Line Flows
Sends a request for a directory listing to the AFTP server and waits for a response
which includes the fully specified path of the directory listing or an error indicator. If
the path of the directory listing is received, the AFTP server sends all of the
directory entries as well. Once the list is complete, a special end-of-list indicator is
sent to the AFTP client.

26 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_dir_read
Use this call to get an individual directory entry, based upon the search specified on
the aftp_dir_open() call. A connection to the AFTP server must be established
before using this call. The aftp_dir_open() call must be called prior to listing the
directory entries.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

dir_entry
(input) Pointer to a buffer into which the procedure will write the directory entry.

Use the AFTP_FILE_NAME_SIZE constant to define the length of this buffer.
Add 1 to the size if you want to be able to add a null terminator to the text in
the buffer.

dir_entry_size
(input) The size in bytes of the dir_entry buffer.

returned_length
(output) The number of bytes returned in the dir_entry parameter.

no_more_entries
(output) Whether or not an entry was returned on this call.

A value of zero indicates that there are more directory entries and that an entry
was returned on this call.

A nonzero value indicates that there are no more directory entries and no entry
was returned on this call. The returned length parameter will be set to zero.
Subsequent calls to aftp_dir_read() will also result in no_more_entries being
nonzero. To end the directory listing, your next call should be aftp_dir_close().

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
This example shows how to use the aftp_dir_open, aftp_dir_read, and
aftp_dir_close calls together.
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
unsigned char dir_entry[AFTP_FILE_NAME_SIZE +1];
AFTP_LENGTH_TYPE dir_entry_length;

/* The value used for filespec will vary based on platform:
* VM common naming: filespec="/a/foo*"

AFTP_ENTRY
aftp_dir_read(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR dir_entry,
AFTP_LENGTH_TYPE dir_entry_size,
AFTP_LENGTH_TYPE AFTP_PTR returned_length,
AFTP_BOOLEAN_TYPE AFTP_PTR no_more_entries,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code),

Chapter 2. AFTP API Call Reference 27

* VM native naming: filespec="foo*.*.a"
* MVS PDS common naming: filespec="/user.clist/foo*"
* MVS PDS native naming: filespec="'user.clist(foo*)'"
* MVS sequential common: filespec="/user.qual*.a*.**"
* MVS sequential native: filespec="'user.qual*.a*.**'"
*/
static unsigned char AFTP_PTR filespec = "/user.clist/foo*";

unsigned char path[AFTP_FILE_NAME_SIZE+1];
AFTP_LENGTH_TYPE path_length;
AFTP_BOOLEAN_TYPE no_more_entries;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
* a connection to server, use: aftp_connect()
*/

/*
* Open a new directory listing on the AFTP server. Both files and
* directory names will be listed along with their attributes.
*/

aftp_dir_open(
connection_id,
filespec,
(AFTP_LENGTH_TYPE)strlen(filespec),
AFTP_DIRECTORY | AFTP_FILE,
AFTP_NATIVE_ATTRIBUTES,
path,
(AFTP_LENGTH_TYPE)sizeof(path)-1,
&path_length,
&aftp_rc);

if (aftp_rc == AFTP_RC_OK) {
path[path_length] = '\0';

printf("Directory listing of %s.", path);

do {
/*
* Read one directory entry from the AFTP server
*/

aftp_dir_read(
connection_id,
dir_entry,
(AFTP_LENGTH_TYPE)sizeof(dir_entry)-1,
&dir_entry_length,
&no_more_entries,
&aftp_rc);

if (aftp_rc == AFTP_RC_OK && no_more_entries == 0) {
dir_entry[dir_entry_length] = '\0';
printf("File: %s\n", dir_entry);

}
/*
* Loop until we either run out of directory
* entries or an error occurs.
*/

} while (aftp_rc == AFTP_RC_OK && no_more_entries == 0);

/*
* Terminate the directory listing by executing
* a close.
*/

28 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_dir_close(connection_id, &aftp_rc);
if (aftp_rc != AFTP_RC_OK) {

fprintf(
stderr,
"Error closing AFTP directory.\n");

}
}
else {

fprintf(stderr, "Error opening AFTP directory.\n");
}

}

Line Flows
There are no line flows for this call.

Chapter 2. AFTP API Call Reference 29

aftp_extract_allocation_size
Use this call to extract the AFTP file allocation size. If the aftp_set_allocation_size()
call has not been invoked, the AFTP default allocation size value is returned.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

allocation_size
(output) The allocation size in bytes that had been set for the AFTP file transfer
operation.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
AFTP_ALLOCATION_SIZE_TYPE allocation_size;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

aftp_extract_allocation_size(
connection_id,
&allocation_size,
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error extracting AFTP allocation size.\n");

}

}

Line Flows
There are no line flows for this call.

AFTP_ENTRY
aftp_extract_allocation_size(

AFTP_HANDLE_TYPE connection_id,
AFTP_ALLOCATION_SIZE_TYPE AFTP_PTR allocation_size,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

30 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_extract_block_size
Use this call to extract the file block size. If the aftp_set_block_size() call has not
been invoked, the AFTP default block size value will be returned.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

block_size
(output) The AFTP file block size in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
AFTP_BLOCK_SIZE_TYPE block_size;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

aftp_extract_block_size(
connection_id,
&block_size,
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error extracting AFTP block size.\n");

}

}

Line Flows
There are no line flows for this call.

AFTP_ENTRY
aftp_extract_block_size(

AFTP_HANDLE_TYPE connection_id,
AFTP_BLOCK_SIZE_TYPE AFTP_PTR block_size,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 31

aftp_extract_data_type
Use this call to extract the data type for file transfers. If the aftp_set_data_type() call
has not been invoked, the AFTP default data type value is returned.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

data_type
(output) The data type to be used for data transfers.
AFTP_ASCII

Transfer files as text files in ASCII.
AFTP_BINARY

Transfer files as a binary sequence of bytes without translation.
AFTP_DEFAULT_DATA_TYPE

Use the data transfer type set in the INI file. If no type is set in the INI
file, use AFTP_ASCII.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
AFTP_DATA_TYPE_TYPE data_type;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

aftp_extract_data_type(
connection_id,
&data_type,;
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error extracting AFTP data type.\n");

}

}

Line Flows
There are no line flows for this call.

AFTP_ENTRY
aftp_extract_data_type(

AFTP_HANDLE_TYPE connection_id,
AFTP_DATA_TYPE_TYPE AFTP_PTR data_type,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

32 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_extract_date_mode
Use this call to extract the way file dates are handled for data transfer. If the
aftp_set_date_mode() call has not been invoked, the AFTP default date mode value
will be returned.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

date_mode
(output) The type of date given to the new file after transfer.
AFTP_NEWDATE

Assign the time/date stamp of the time of transfer.
AFTP_OLDDATE

Assign the time/date stamp of the source file.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
AFTP_DATE_MODE_TYPE date_mode;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

aftp_extract_date_mode(
connection_id,
&date_mode;
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error extracting AFTP date mode.\n");

}

}

Line Flows
There are no line flows for this call.

AFTP_ENTRY
aftp_extract_date_mode(

AFTP_HANDLE_TYPE connection_id,
AFTP_DATE_MODE_TYPE AFTP_PTR date_mode,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 33

aftp_extract_destination
Use this call to extract the destination of the AFTP server. If the
aftp_set_destination() call has not been invoked, the AFTP default destination value
will be returned.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

destination
(output) Buffer into which the name of the AFTP server is written. This
parameter can be either a symbolic destination name or a partner LU name.

See the z/OS Communications Server: APPC Application Suite User’s Guide for
information about specifying destinations in the APPC Application Suite.

destination_size
(input) The size of the buffer in which the destination will be stored.

Use the AFTP_FQLU_NAME_SIZE constant to define the length of this buffer.
Add 1 to the size if you want to be able to add a null terminator to the text in
the buffer.

returned_length
(output) The actual length of the destination parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
unsigned char destname[AFTP_FQLU_NAME_SIZE+1];
AFTP_LENGTH_TYPE returned_length;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

/*
* Extract the destination name for AFTP.
*/

aftp_extract_destination(
connection_id,
destname,
(AFTP_LENGTH_TYPE)sizeof(destname)-1,
&returned_length,;

AFTP_ENTRY
aftp_extract_destination(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR destination,
AFTP_LENGTH_TYPE destination_size,
AFTP_LENGTH_TYPE AFTP_PTR returned_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

34 z/OS V1R2.0 CS: APPC Application Suite Programming

&aftp_rc);
if (aftp_rc != AFTP_RC_OK) {

fprintf(stderr, "Error extracting AFTP destination.\n");
}

}

Line Flows
There are no line flows for this call.

Chapter 2. AFTP API Call Reference 35

aftp_extract_mode_name
Use this call to extract the mode name specified for the connection to the AFTP
server. If the aftp_set_mode_name() call has not been invoked, the AFTP default
mode name value will be returned.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

mode_name
(output) The buffer in which the mode name is to be stored.

Use the AFTP_MODE_NAME_SIZE constant to define the length of this buffer.
Add 1 to the size if you want to be able to add a null terminator to the text in
the buffer.

mode_name_size
(input) The size of buffer in which the mode name will be stored.

returned_length
(output) The actual length of the mode_name parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
unsigned char AFTP_PTR mode_name[AFTP_MODE_NAME_SIZE+1];
AFTP_LENGTH_TYPE returned_length;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

/*
* Extract the APPC mode name for AFTP.
*/

aftp_extract_mode_name(
connection_id,
mode_name,
(AFTP_LENGTH_TYPE)sizeof(mode_name)-1,
&returned_length,;
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {

AFTP_ENTRY
aftp_extract_mode_name(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR mode_name,
AFTP_LENGTH_TYPE mode_name_size,
AFTP_LENGTH_TYPE AFTP_PTR returned_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

36 z/OS V1R2.0 CS: APPC Application Suite Programming

fprintf(stderr, "Error extracting AFTP mode name.\n");
}

}

Line Flows
There are no line flows for this call.

Chapter 2. AFTP API Call Reference 37

aftp_extract_partner_LU_name
Use this call to extract the fully qualified LU name of the server. A connection to the
AFTP server must occur before this call can be invoked.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

partner_LU_name
(output) Buffer to which the fully qualified LU name is written.

Use the AFTP_FQLU_NAME_SIZE constant to define the length of this buffer.
Add 1 to the size if you want to be able to add a null terminator to the text in
the buffer.

partner_LU_name_size
(input) The size of the buffer that the partner_LU_name will be written to.

returned_length
(output) The actual length of the partner_LU_name parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
unsigned char partner[AFTP_FQLU_NAME_SIZE+1];
AFTP_LENGTH_TYPE returned_length;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
* a connection to server, use: aftp_connect()
*/

/*
* Extract the partner LU name for AFTP.
*/

aftp_extract_partner_LU_name(
connection_id,
partner,
(AFTP_LENGTH_TYPE)sizeof(partner)-1,
&returned_length,;
&aftp_rc);

AFTP_ENTRY
aftp_extract_partner_LU_name(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR partner_LU_name,
AFTP_LENGTH_TYPE partner_LU_name_size,
AFTP_LENGTH_TYPE AFTP_PTR returned_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

38 z/OS V1R2.0 CS: APPC Application Suite Programming

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error extracting AFTP destination.\n");

}
}

Line Flows
There are no line flows for this call.

Chapter 2. AFTP API Call Reference 39

aftp_extract_password
Use this call to extract the password specified for the connection to the AFTP
server. If the aftp_set_password() call has not been invoked, the AFTP default
password value will be returned.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

password
(output) The buffer in which the password used on the connection is written.

Use the AFTP_PASSWORD_SIZE constant to define the length of this buffer.
Add 1 to the size if you want to be able to add a null terminator to the text in
the buffer.

password_size
(input) The size of the buffer in which the password is to be written.

returned_length
(output) The actual length of the password parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
unsigned char password[AFTP_PASSWORD_SIZE+1];
AFTP_LENGTH_TYPE returned_length;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

/*
* Extract the password for AFTP.
*/

aftp_extract_password(
connection_id,
password,
(AFTP_LENGTH_TYPE)sizeof(password)-1,
&returned_length,;
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {

AFTP_ENTRY
aftp_extract_password(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR password,
AFTP_LENGTH_TYPE password_size,
AFTP_LENGTH_TYPE AFTP_PTR returned_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

40 z/OS V1R2.0 CS: APPC Application Suite Programming

fprintf(stderr, "Error extracting AFTP password.\n");
}

}

Line Flows
There are no line flows for this call.

Chapter 2. AFTP API Call Reference 41

aftp_extract_record_format
Use this call to extract the record format for the data transfer. If the
aftp_set_record_format() call has not been invoked, the AFTP default record format
value will be returned.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

record_format
(output) The record format used for file transfer.
AFTP_DEFAULT_RECORD_FORMAT

Specifies that the system on which the file will be written should use its
own default setting for record format. This is the initial setting.

AFTP_V
Variable length record, unblocked.

AFTP_VA
Variable length record, unblocked, ASA print-control characters.

AFTP_VB
Variable length record, blocked.

AFTP_VM
Variable length record, unblocked, machine print-control codes.

AFTP_VS
Variable length record, unblocked, spanned.

AFTP_VBA
Variable length record, blocked, ASA print-control characters.

AFTP_VBM
Variable length record, blocked, machine print-control codes.

AFTP_VBS
Variable length record, blocked, spanned.

AFTP_VSA
Variable length record, unblocked, spanned, ASA print-control
characters.

AFTP_VSM
Variable length record, unblocked, spanned, machine print-control
codes.

AFTP_VBSA
Variable length record, blocked, spanned, ASA print-control characters.

AFTP_VBSM
Variable length record, blocked, spanned, machine print-control codes.

AFTP_F
Fixed length record, unblocked.

AFTP_FA
Fixed length record, unblocked, ASA print-control characters.

AFTP_FB
Fixed length record, blocked.

AFTP_ENTRY
aftp_extract_record_format(

AFTP_HANDLE_TYPE connection_id,
AFTP_RECORD_FORMAT_TYPE AFTP_PTR record_format,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

42 z/OS V1R2.0 CS: APPC Application Suite Programming

AFTP_FM
Fixed length record, unblocked, machine print-control codes.

AFTP_FBA
Fixed length record, blocked, ASA print-control characters.

AFTP_FBM
Fixed length record, blocked, machine print-control codes.

AFTP_FBS
Fixed length record, blocked, standard.

AFTP_FBSM
Fixed length record, blocked, machine print-control codes, standard.

AFTP_FBSA
Fixed length record, blocked, ASA print-control characters, standard.

AFTP_U
Undefined length record.

AFTP_UA
Undefined length record, ASA print control characters.

AFTP_UM
Undefined length record, machine print control codes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
AFTP_RECORD_FORMAT_TYPE record_format;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

/*
* Extract the file record format for AFTP.
*/

aftp_extract_record_format(
connection_id,
&record_format,;
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error extracting AFTP record format.\n");

}
}

Line Flows
There are no line flows for this call.

Chapter 2. AFTP API Call Reference 43

aftp_extract_record_length
Use this call to extract the record length for fixed length records, or the maximum
possible record length for variable length records used for data transfer. If the
aftp_set_record_length() call has not been invoked, the AFTP default record length
value will be returned.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

record_length
(output) The record length for the data transfer specified in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
AFTP_RECORD_LENGTH_TYPE record_length;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

/*
* Extract the file record length for AFTP.
*/

aftp_extract_record_length(
connection_id,
&record_length,;
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error extracting AFTP record length.\n");

}
}

Line Flows
There are no line flows for this call.

AFTP_ENTRY
aftp_extract_record_length(

AFTP_HANDLE_TYPE connection_id,
AFTP_RECORD_LENGTH_TYPE AFTP_PTR record_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

44 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_extract_security_type
Use this call to extract the type of APPC conversation security used. If the
aftp_set_security_type() call has not been invoked, the AFTP default security type
value will be returned.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

security_type
(output) The security to be used when connecting to the AFTP server.
AFTP_SECURITY_NONE

No APPC conversation security is used.
AFTP_SECURITY_SAME

The local security information determined at login time will be
transferred to the AFTP server.

AFTP_SECURITY_PROGRAM
A user ID and password will be sent to be verified by the AFTP server.
This security type requires the use of the aftp_set_userid() and
aftp_set_password() calls, or the connection attempt will fail.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
AFTP_SECURITY TYPE sec_type;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

/*
* Extract the APPC security type for AFTP.
*/

aftp_extract_security_type(
connection_id,
&sec_type,;
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr,
"Error extracting AFTP security type.\n");

}
}

AFTP_ENTRY
aftp_extract_security_type(

AFTP_HANDLE_TYPE connection_id,
AFTP_SECURITY_TYPE AFTP_PTR security_type,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 45

Line Flows
There are no line flows for this call.

46 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_extract_tp_name
Use this call to extract the transaction program (TP) name of the AFTP server. If the
aftp_set_tp_name() call has not been invoked, the AFTP default transaction
program name value is returned.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

tp_name
(output) The buffer into which the transaction program name of the AFTP server
will be written.

Use the AFTP_TP_NAME_SIZE constant to define the length of this buffer. Add
1 to the size if you want to be able to add a null terminator to the text in the
buffer.

tp_name_size
(input) The size of the buffer to which the transaction program name will be
written.

returned_length
(output) The actual length of the transaction program name parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
unsigned char tp_name[AFTP_TP_NAME_SIZE+1];
AFTP_LENGTH_TYPE returned_length;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

/*
* Extract the TP name for AFTP.
*/

aftp_extract_tp_name(
connection_id,
tp_name
(AFTP_LENGTH_TYPE)sizeof(tp_name)-1,
&returned_length,;
&aftp_rc);

AFTP_ENTRY
aftp_extract_tp_name(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR tp_name,
AFTP_LENGTH_TYPE tp_name_size,
AFTP_LENGTH_TYPE AFTP_PTR returned_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 47

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error extracting AFTP TP name.\n");

}
}

Line Flows
There are no line flows for this call.

48 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_extract_trace_level
Use this call to extract the current trace level setting.

Format

Parameters
trace_level

(output) The current setting of the trace level in AFTP. The constants from
AFTP_LVL_NO_TRACING to AFTP_LVL_MAX_TRACE_LVL incrementally
increase the amount of trace information.
ANAME_LVL_NO_TRACING

No data will be written to the trace log.
ANAME_LVL_API

Traces crossings of the API boundary.
ANAME_LVL_MAX_TRACE_LVL

Provides the maximum amount of trace information.

Other trace levels are reserved for diagnosing problems with the assistance of
the IBM* Support Center.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_RETURN_CODE_TYPE rc;
AFTP_TRACE_LEVEL_TYPE trace_level;

/*
* There are no prerequisite calls for this call.
*/

aftp_extract_trace_level(&trace_level, &rc);

if (rc != AFTP_RC_OK) {
fprintf(stderr, "Error extracting trace level\n");

}

}

Line Flows
There are no line flows for this call.

AFTP_ENTRY
aftp_extract_trace_level(

AFTP_TRACE_LEVEL_TYPE AFTP_PTR trace_level,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 49

aftp_extract_userid
Use this call to extract the user ID specified for the connection to the AFTP server.
If the CPI-C extract userid function is not supported the AFTP default user ID value
will be returned.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

userid
(output) The buffer into which the user ID used on the connection will be
written.

Use the AFTP_USERID_SIZE constant to define the length of this buffer. Add 1
to the size if you want to be able to add a null terminator to the text in the
buffer.

userid_size
(input) The size of the buffer into which the user ID will be written.

returned_length
(output) The actual length of the userid parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
unsigned char userid[AFTP_USERID_SIZE+1];
AFTP_LENGTH_TYPE returned_length;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

/*
* Extract the user ID for AFTP.
*/

aftp_extract_userid(
connection_id,
userid,
(AFTP_LENGTH_TYPE)sizeof(userid)-1,
&returned_length,
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {

AFTP_ENTRY
aftp_extract_userid(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR userid,
AFTP_LENGTH_TYPE userid_size,
AFTP_LENGTH_TYPE AFTP_PTR returned_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

50 z/OS V1R2.0 CS: APPC Application Suite Programming

fprintf(stderr, "Error extracting userid.\n");
}

}

Line Flows
There are no line flows for this call.

Chapter 2. AFTP API Call Reference 51

aftp_extract_write_mode
Use this call to extract the way that existing files are treated when a data transfer
copies to them. If the aftp_set_write_mode() call has not been invoked, the AFTP
default write mode value will be returned.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

write_mode
(output) The method used to write a file if a copy of the file already exists. If the
file does not exist on the target, the new file is created.
AFTP_REPLACE

Transferred file will replace the existing file.
AFTP_APPEND

Transferred file will be appended to the existing file.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
AFTP_WRITE_MODE_TYPE write_mode;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

/*
* Extract the file write mode for AFTP.
*/

aftp_extract_write_mode(
connection_id,
&write_mode,
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error extracting AFTP write mode.\n");

}
}

Line Flows
There are no line flows for this call.

AFTP_ENTRY
aftp_extract_write_mode(

AFTP_HANDLE_TYPE connection_id,
AFTP_WRITE_MODE_TYPE AFTP_PTR write_mode,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

52 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_format_error
Use this call to retrieve the current AFTP error information to a text buffer. The
AFTP return code for the current error must not be
AFTP_RC_HANDLE_NOT_VALID. If the current status is AFTP_RC_OK, and the
aftp_format_error() call is invoked, the return_code value output by this call will be
AFTP_RC_STATE_CHECK. The aftp_format_error() call should only be invoked
when an error has occurred.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

detail_level
(input) The detail in which the error string will describe the AFTP error. These
values can be OR’ed together to retrieve specific sets of information. For
example, if the primary message and the error log information should be
returned, specify (AFTP_DETAIL_RC | AFTP_DETAIL_LOG).
AFTP_DETAIL_RC

The AFTP return code, error category, index and primary error message
will be output.

AFTP_DETAIL_SECOND
The AFTP secondary error message will be output.

AFTP_DETAIL_LOG
The error logging information will be output.

AFTP_DETAIL_INFO
The informational message associated with the error will be output.

AFTP_DETAIL_ALL
All of the previous detail levels will be output in the error string.

error_str
(output) The buffer into which the error information string will be written.

Use the AFTP_MESSAGE_SIZE constant to define the length of this buffer. Add
1 to the size if you want to be able to add a null terminator to the text in the
buffer.

error_str_size
(input) The size of the buffer in which the error information will be written.

returned_length
(output) The actual length of the error_str parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

AFTP_ENTRY
aftp_format_error(

AFTP_HANDLE_TYPE connection_id,
AFTP_DETAIL_LEVEL_TYPE detail_level,
unsigned char AFTP_PTR error_str,
AFTP_LENGTH_TYPE error_str_size,
AFTP_LENGTH_TYPE AFTP_PTR returned_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 53

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
unsigned char error_string[AFTP_MESSAGE_SIZE+1];
AFTP_LENGTH_TYPE returned_length;

/*
* There are no specific prerequisite calls for this call,
* but you must issue a call that returns an error return code
*/

if (aftp_rc != AFTP_RC_OK) {
/*
* We had an AFTP error - so let's get
* the description that corresponds to
* the error.
*/

aftp_format_error(
connection_id,
AFTP_DETAIL_ALL,
error_string,
(AFTP_LENGTH_TYPE)sizeof(error_string)-1,
&returned_length,
&aftp_rc);

}
}

Line Flows
There are no line flows for this call.

54 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_get_data_type_string
Use this call to get a string which corresponds to the input AFTP data type value.
This string is available to allow all users of the AFTP API to have consistent strings
for each data type. It is not necessary to create an AFTP connection object prior to
the invocation of this call.

Format

Parameters
data_type

(input) An AFTP data type value.
AFTP_ASCII

Transfer files as text files in ASCII.
AFTP_BINARY

Transfer files as a binary sequence of bytes without translation.
AFTP_DEFAULT_DATA_TYPE

Use the data transfer type set in the INI file. If no type is set in the INI
file, use AFTP_ASCII.

data_type_string
(output) The buffer into which the data type string will be written.

Use the AFTP_DATA_TYPE_SIZE constant to define the length of this buffer.
Add 1 to the size if you want to be able to add a null terminator to the text in
the buffer.

data_type_size
(input) The size of the buffer into which the data type string will be written.

returned_length
(output) The actual length of the data_type_string parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_RETURN_CODE_TYPE aftp_rc;
unsigned char data_type[AFTP_DATA_TYPE_SIZE+1];
AFTP_LENGTH_TYPE returned_length;

/*
* There are no prerequisite calls for this call.
*/
/*
* Get the data type string.
*/

aftp_get_data_type_string(
AFTP_ASCII,

AFTP_ENTRY
aftp_get_data_type_string(

AFTP_DATA_TYPE_TYPE data_type,
unsigned char AFTP_PTR data_type_string,
AFTP_LENGTH_TYPE data_type_size,
AFTP_LENGTH_TYPE AFTP_PTR returned_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 55

data_type,
(AFTP_LENGTH_TYPE)sizeof(data_type)-1,
&returned_length,
&aftp_rc);

}

Line Flows
There are no line flows for this call.

56 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_get_date_mode_string
Use this call to get a string which corresponds to the input AFTP date mode value.
This string is available to allow all users of the AFTP API to have consistent strings
for each date mode type. It is not necessary to create an AFTP connection object
prior to the invocation of this call.

Format

Parameters
date_mode

(input) An AFTP date mode value.
AFTP_NEWDATE

Assign the time/date stamp of the time of transfer.
AFTP_OLDDATE

Assign the time/date stamp of the source file.

date_mode_string
(output) The buffer into which the date mode string will be written.

Use the AFTP_DATE_MODE_SIZE constant to define the length of this buffer.
Add 1 to the size if you want to be able to add a null terminator to the text in
the buffer.

date_mode_size
(input) The size of the buffer into which the date mode string will be written.

returned_length
(output) The actual length of the date_mode_string parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_RETURN_CODE_TYPE aftp_rc;
unsigned char date_mode[AFTP_DATE_MODE_SIZE+1];
AFTP_LENGTH_TYPE returned_length;

/*
* There are no prerequisite calls for this call.
*/

/*
* Get the date mode string.
*/

aftp_get_date_mode_string(
AFTP_OLDDATE,
date_mode,

AFTP_ENTRY
aftp_get_date_mode_string(

AFTP_DATE_MODE_TYPE date_mode,
unsigned char AFTP_PTR date_mode_string,
AFTP_LENGTH_TYPE date_mode_size,
AFTP_LENGTH_TYPE AFTP_PTR returned_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 57

(AFTP_LENGTH_TYPE)sizeof(date_mode)-1,
&returned_length,
&aftp_rc);

}

Line Flows
There are no line flows for this call.

58 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_get_record_format_string
Use this call to get a string which corresponds to the input AFTP record format
value. This string is available to allow all users of the AFTP API to have consistent
strings for each record format type. It is not necessary to create an AFTP
connection object prior to issuing this call.

Format

Parameters
record_format

(input) An AFTP record format value.
AFTP_DEFAULT_RECORD_FORMAT

Specifies that the system on which the file will be written should use its
own default setting for record format. This is the initial setting.

AFTP_V
Variable length record, unblocked.

AFTP_VA
Variable length record, unblocked, ASA print-control characters.

AFTP_VB
Variable length record, blocked.

AFTP_VM
Variable length record, unblocked, machine print-control codes.

AFTP_VS
Variable length record, unblocked, spanned.

AFTP_VBA
Variable length record, blocked, ASA print-control characters.

AFTP_VBM
Variable length record, blocked, machine print-control codes.

AFTP_VBS
Variable length record, blocked, spanned.

AFTP_VSA
Variable length record, unblocked, spanned, ASA print-control
characters.

AFTP_VSM
Variable length record, unblocked, spanned, machine print-control
codes.

AFTP_VBSA
Variable length record, blocked, spanned, ASA print-control characters.

AFTP_VBSM
Variable length record, blocked, spanned, machine print-control codes.

AFTP_F
Fixed length record, unblocked.

AFTP_FA
Fixed length record, unblocked, ASA print-control characters.

AFTP_FB
Fixed length record, blocked.

AFTP_ENTRY
aftp_get_record_format_string(

AFTP_RECORD_FORMAT_TYPE record_format,
unsigned char AFTP_PTR record_format_string,
AFTP_LENGTH_TYPE record_format_size,
AFTP_LENGTH_TYPE AFTP_PTR returned_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 59

AFTP_FM
Fixed length record, unblocked, machine print-control codes.

AFTP_FBA
Fixed length record, blocked, ASA print-control characters.

AFTP_FBM
Fixed length record, blocked, machine print-control codes.

AFTP_FBS
Fixed length record, blocked, standard.

AFTP_FBSM
Fixed length record, blocked, machine print-control codes, standard.

AFTP_FBSA
Fixed length record, blocked, ASA print-control characters, standard.

AFTP_U
Undefined length record.

AFTP_UA
Undefined length record, ASA print control characters.

AFTP_UM
Undefined length record, machine print control codes.

record_format_string
(output) The buffer into which the record format string will be written.

Use the AFTP_RECORD_FORMAT_SIZE constant to define the length of this
buffer. Add 1 to the size if you want to be able to add a null terminator to the
text in the buffer.

record_format_size
(input) The size of the buffer into which the record format string will be written.

returned_length
(output) The actual length of the data structure string parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_RETURN_CODE_TYPE aftp_rc;
unsigned char recfm[AFTP_RECORD_FORMAT_SIZE+1];
AFTP_LENGTH_TYPE returned_length;

/*
* There are no prerequisite calls for this call.
*/

/*
* Get the record format string.
*/

aftp_get_record_format_string(
AFTP_F,
recfm,
(AFTP_LENGTH_TYPE)sizeof(recfm)-1,
&returned_length,
&aftp_rc);

}

Line Flows
There are no line flows for this call.

60 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_get_write_mode_string
Use this call to get a string which corresponds to the input AFTP write mode value.
This string is available to allow all users of the AFTP API to have consistent strings
for each write mode type. It is not necessary to create an AFTP connection object
prior to the invocation of this call.

Format

Parameters
write_mode

(input) The method used to write a file if a copy of the file already exists. If the
file does not exist on the target, the new file will be created.
AFTP_REPLACE

Transferred file will replace the existing file.
AFTP_APPEND

Transferred file will be appended to the existing file.

write_mode_string
(output) The buffer into which the write mode string will be written.

Use the AFTP_WRITE_MODE_SIZE constant to define the length of this buffer.
Add 1 to the size if you want to be able to add a null terminator to the text in
the buffer.

write_mode_size
(input) The size of the buffer into which the write mode string will be written.

returned_length
(output) The actual length of the write mode string parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_RETURN_CODE_TYPE aftp_rc;
unsigned char write_mode[AFTP_WRITE_MODE_SIZE+1];
AFTP_LENGTH_TYPE returned_length;

/*
* There are no prerequisite calls for this call.
*/

/*
* Get the write mode string.
*/

aftp_get_write_mode_string(
AFTP_REPLACE,
write_mode

AFTP_ENTRY
aftp_get_write_mode_string(

AFTP_WRITE_MODE_TYPE write_mode,
unsigned char AFTP_PTR write_mode_string,
AFTP_LENGTH_TYPE write_mode_size,
AFTP_LENGTH_TYPE AFTP_PTR returned_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 61

(AFTP_LENGTH_TYPE)sizeof(write_mode)-1,
&returned_length,
&aftp_rc);

}

Line Flows
There are no line flows for this call.

62 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_load_ini_file
Use this call to read the AFTP initialization file into memory. The AFTP and ACOPY
programs both use the initialization file. This file includes information required to
map filenames on the current platform. Once the AFTP initialization file is stored in
memory, AFTP will automatically consult the data it contains before proceeding with
any operations. It is not necessary to create an AFTP connection object prior to the
invocation of this call.

The name of the initialization file varies by operating system:

v MVS: DD:APPFTPI

v VM: AFTP INI

v OS/2: AFTP.INI

Format

Parameters
filename

(input) The filename of the AFTP initialization file.

filename_size
(input) The length of the filename parameter in bytes.

program_path
(input) For OS/2, the fully qualified file specification of the program that is
running. The path from the file specification will be used to locate the AFTP
initialization file.

For MVS or VM where this information is not available, provide a 0-length string
(not a null string) for this parameter.

path_size
(input) The length of the program_path parameter in bytes.

error_string
(output) The buffer into which any error messages will be written during loading
of the initialization file.

Use the AFTP_INI_MESSAGE_SIZE constant to define the length of this buffer.
Add 1 to the size if you want to be able to add a null terminator to the text in
the buffer.

error_string_size
(input) The size of the buffer into which the error information will be written.

returned_length
(output) The actual size of the error information in bytes.

AFTP_ENTRY
aftp_load_ini_file(

unsigned char AFTP_PTR filename,
AFTP_LENGTH_TYPE filename_size,
unsigned char AFTP_PTR program_path,
AFTP_LENGTH_TYPE path_size,
unsigned char AFTP_PTR error_string,
AFTP_LENGTH_TYPE error_string_size,
AFTP_LENGTH_TYPE AFTP_PTR returned_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 63

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_RETURN_CODE_TYPE aftp_rc;
static unsigned char AFTP_PTR init_file_name = "DD:APPFTPI";
static unsigned char AFTP_PTR program_name = ""
unsigned char error_string[AFTP_INI_MESSAGE_SIZE+1];
AFTP_LENGTH_TYPE returned_length;

/*
* There are no prerequisite calls for this call.
*/

/*
* Load the AFTP initialization file into memory.
*/
aftp_load_ini_file(

init_file_name,
(AFTP_LENGTH_TYPE)strlen(init_file_name),
program_name,
(AFTP_LENGTH_TYPE)strlen(program_name),
error_string,
(AFTP_LENGTH_TYPE)sizeof(error_string),
&returned_length,
&aftp_rc);

if (aftp_rc != AFTP_RC_OK {
error_string[returned_length]='\0';
printf(stderr, error_string);

}
}

Line Flows
There are no line flows for this call.

64 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_local_change_dir
Use this call to change the current working directory on the AFTP client. A
connection to the AFTP server is not required before using this call.

Read the z/OS Communications Server: APPC Application Suite User’s Guide for
details on how the directory concept is handled for supported operating systems.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

directory
(input) The new directory name. The format of this name can either be the
native syntax on the AFTP client or the AFTP common naming convention
(described in the z/OS Communications Server: APPC Application Suite User’s
Guide). The directory specified can either be an absolute or relative path name.

length
(input) The length of the directory parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;

/* The value used will vary based on platform:
* VM common naming: directory = "/d"
* VM native naming: directory = "/d"
* MVS PDS common naming: directory = "/user.clist/"
* MVS PDS native naming: directory = "'user.clist'"
* MVS data set prefix common: directory = "/user.qual.a."
* MVS data set prefix native: directory = "'user.qual.a.'"
* OS/2 common naming: directory = "/c:/os2"
* OS/2 native naming: directory = "c:\\os2"
*/
static unsigned char AFTP_PTR directory = "/user.clist/"; /* MVS */

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

/*
* Specify the new current working directory name on the AFTP
* client.
*/

AFTP_ENTRY
aftp_local_change_dir(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR directory,
AFTP_LENGTH_TYPE length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 65

aftp_local_change_dir(
connection_id,
directory,
(AFTP_LENGTH_TYPE)strlen(directory),
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error changing AFTP directory.\n");

}
}

Line Flows
There are no line flows for this call.

66 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_local_dir_close
Use this call to cancel a directory listing on the AFTP client that is in progress or
end a directory listing on the AFTP client after no_more_entries has been returned
from an aftp_local_dir_read() call. A connection to the AFTP server is not required
before using this call. A directory listing on the AFTP client must be started by
calling aftp_local_dir_open() prior to making this call.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
See “aftp_local_dir_read” on page 70 for a complete example showing the related
calls: aftp_local_dir_open, aftp_local_dir_read, and aftp_local_dir_close.

Line Flows
There are no line flows for this call.

AFTP_ENTRY
aftp_local_dir_close(

AFTP_HANDLE_TYPE connection_id,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 67

aftp_local_dir_open
Use this call to begin a directory listing and specify the file search parameters on
the AFTP client. The aftp_local_dir_read() call is used to read individual directory
entries. The aftp_local_dir_close() call is used to end the directory listing. A
connection to the AFTP server is not required before using this call.

Read the z/OS Communications Server: APPC Application Suite User’s Guide for
details on how the directory concept is handled for supported operating systems.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

filespec
(input) The search string which the client uses to generate the directory listing.
The files in the listing must match the search string. The format of this name
can either be the native syntax on the AFTP client or the AFTP common
naming convention (described in the z/OS Communications Server: APPC
Application Suite User’s Guide). The file specified can either be an absolute or
relative path name and can contain wildcard characters.

length
(input) The length of the filespec parameter in bytes.

file_type
(input) The type of information (directory names or file names) to be returned.
AFTP_FILE

Only file entries
AFTP_DIRECTORY

Only directory entries
AFTP_ALL_FILES

Both file and directory entries

info_level
(input) The level and format of information to be returned about each file or
directory entry.
AFTP_NATIVE_NAMES

Native names without attributes.
AFTP_NATIVE_ATTRIBUTES

Native names and native file attributes.

path
(output) The fully qualified directory name in which of all of the directory entries
exist. The actual directory entries will be returned when the

AFTP_ENTRY
aftp_local_dir_open(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR filespec,
AFTP_LENGTH_TYPE length,
AFTP_FILE_TYPE_TYPE file_type,
AFTP_INFO_LEVEL_TYPE info_level,
unsigned char AFTP_PTR path,
AFTP_LENGTH_TYPE path_buffer_length,
AFTP_LENGTH_TYPE AFTP_PTR path_returned_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

68 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_local_dir_read() call is used. The path can be used along with the returned
directory entry filename to create a fully qualified path name to use on another
AFTP file call.

Use the AFTP_FILE_NAME_SIZE constant to define the length of this buffer.
Add 1 to the size if you want to be able to add a null terminator to the text in
the buffer.

path_buffer_length
(input) The size in bytes of the buffer pointed to by the path parameter.

path_returned_length
(output) The number of bytes returned in the path parameter.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
See “aftp_local_dir_read” on page 70 for a complete example showing the related
calls: aftp_local_dir_open, aftp_local_dir_read, and aftp_local_dir_close.

Line Flows
There are no line flows for this call.

Chapter 2. AFTP API Call Reference 69

aftp_local_dir_read
Use this call to get an individual directory entry from the AFTP client, based upon
the search specified on the aftp_local_dir_open() call. A connection to the AFTP
server is not required before using this call. The aftp_local_dir_open() call must be
called prior to listing the directory entries.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

dir_entry
(input) Pointer to a buffer into which the procedure will write the directory entry.

Use the AFTP_FILE_NAME_SIZE constant to define the length of this buffer.
Add 1 to the size if you want to be able to add a null terminator to the text in
the buffer.

dir_entry_size
(input) The size in bytes of the dir_entry buffer.

returned_length
(output) The number of bytes returned in the dir_entry parameter.

no_more_entries
(output) Whether or not an entry was returned on this call.

A value of zero indicates that there are more directory entries and that an entry
was returned on this call.

A nonzero value indicates that there are no more directory entries and that no
entry was returned on this call. The returned length parameter is set to zero.
Subsequent calls to aftp_local_dir_read() will also result in no_more_entries
being nonzero. To end the directory listing, your next call should be
aftp_local_dir_close().

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
unsigned char dir_entry[AFTP_FILE_NAME_SIZE+1];
AFTP_LENGTH_TYPE dir_entry_length;

/* The value used for filespec will vary based on platform:
* VM common naming: filespec="/a/foo*"
* VM native naming: filespec="foo*.*.a"

AFTP_ENTRY
aftp_local_dir_read(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR dir_entry,
AFTP_LENGTH_TYPE dir_entry_size,
AFTP_LENGTH_TYPE AFTP_PTR returned_length,
AFTP_BOOLEAN_TYPE AFTP_PTR no_more_entries,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

70 z/OS V1R2.0 CS: APPC Application Suite Programming

* MVS PDS common naming: filespec="/user.clist/foo*"
* MVS PDS native naming: filespec="'user.clist(foo*)'"
* MVS sequential common: filespec="/user.qual*.a*.**"
* MVS sequential native: filespec="'user.qual*.a*.**'"
*/
static unsigned char AFTP_PTR filespec = "/user.clist/foo*";

unsigned char path[AFTP_FILE_NAME_SIZE+1];
AFTP_LENGTH_TYPE path_length;
AFTP_BOOLEAN_TYPE no_more_entries;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

/*
* Open a new directory listing on the AFTP client. Both files and
* directory names will be listed along with their attributes.
*/

aftp_local_dir_open(
connection_id,
filespec,
(AFTP_LENGTH_TYPE)strlen(filespec),
AFTP_DIRECTORY | AFTP_FILE,
AFTP_NATIVE_ATTRIBUTES,
path,
(AFTP_LENGTH_TYPE)sizeof(path)-1,
&path_length,
&aftp_rc);

if (aftp_rc == AFTP_RC_OK) {
path[path_length] = '\0';

printf("Directory listing of %s.", path);

do {
/*
* Read one directory entry from the AFTP client
*/

aftp_local_dir_read(
connection_id,
dir_entry,
(AFTP_LENGTH_TYPE)sizeof(dir_entry)-1,
&dir_entry_length,
&no_more_entries,
&aftp_rc);

if (aftp_rc == AFTP_RC_OK && no_more_entries == 0) {
dir_entry[dir_entry_length] = '\0';
printf("Local file: %s\n", dir_entry);

}
/*
* Loop until we either run out of directory
* entries or an error occurs.
*/

} while (aftp_rc == AFTP_RC_OK && no_more_entries == 0);

/*
* Terminate the directory listing by executing
* a close.
*/

aftp_local_dir_close(connection_id, &aftp_rc);

Chapter 2. AFTP API Call Reference 71

if (aftp_rc != AFTP_RC_OK) {
fprintf(

stderr,
"Error closing local AFTP directory.\n");

}
}
else {

fprintf(stderr, "Error opening local AFTP directory.\n");
}

}

Line Flows
There are no line flows for this call.

72 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_local_query_current_dir
Use this call to query the current working directory on the AFTP client. A connection
to the AFTP server is not required before using this call.

Read the z/OS Communications Server: APPC Application Suite User’s Guide for
details on how the directory concept is handled for supported operating systems.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

directory
(output) The buffer into which the current working directory on the AFTP client
will be written.

Use the AFTP_FILE_NAME_SIZE constant to define the length of this buffer.
Add 1 to the size if you want to be able to add a null terminator to the text in
the buffer.

directory_size
(input) The size in bytes of the directory buffer.

returned_length
(output) The actual length of the directory parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
unsigned char directory[AFTP_FILE_NAME_SIZE+1];
AFTP_LENGTH_TYPE length;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

/*
* Query the current working directory on the
* AFTP client.
*/

aftp_local_query_current_dir(
connection_id,
directory,
(AFTP_LENGTH_TYPE)sizeof(directory)-1,

AFTP_ENTRY
aftp_local_query_current_dir(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR directory,
AFTP_LENGTH_TYPE directory_size,
AFTP_LENGTH_TYPE AFTP_PTR returned_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 73

&length,
&aftp_rc);

directory[length] = '\0';

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error in query of local current directory.\n");

}
}

Line Flows
There are no line flows for this call.

74 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_query_bytes_transferred
Use this call to query the total number of bytes transferred after either an
aftp_send_file() or aftp_receive_file() call has completed. The number of bytes
transferred is valid only after a file transfer operation has completed. A connection
to the AFTP server must be established before using this call.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

bytes_transferred
(output) The number of bytes of data transferred during the last send or receive
file operation.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
AFTP_LENGTH_TYPE number_bytes;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
* a connection to server, use: aftp_connect()
* completed a send or receive, use: aftp_send() or aftp_receive()
*/

aftp_query_bytes_transferred(connection_id, &number_bytes, &aftp_rc);
if (aftp_rc != AFTP_RC_OK) {

fprintf(stderr, "Error getting number bytes transferred.\n");
} else {

fprintf(stdout, "Number of bytes %d.\n", (int)number_bytes);
}

}

Line Flows
There are no line flows for this call.

AFTP_ENTRY
aftp_query_bytes_transferred(

AFTP_HANDLE_TYPE connection_id,
AFTP_LENGTH_TYPE AFTP_PTR bytes_transferred,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 75

aftp_query_current_dir
Use this call to query the current directory on the AFTP server. A connection to the
AFTP server must be established before using this call.

Read the z/OS Communications Server: APPC Application Suite User’s Guide for
details on how the directory concept is handled for supported operating systems.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

directory
(output) The buffer into which the current working directory on the AFTP server
will be written.

Use the AFTP_FILE_NAME_SIZE constant to define the length of this buffer.
Add 1 to the size if you want to be able to add a null terminator to the text in
the buffer.

directory_size
(input) The size in bytes of the directory buffer.

returned_length
(output) The actual length of the directory parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
unsigned char directory[AFTP_FILE_NAME_SIZE+1];
AFTP_LENGTH_TYPE length;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
* a connection to server, use: aftp_connect()
*/

/*
* Query the current working directory on the AFTP server.
*/

aftp_query_current_dir(
connection_id,
directory,
(AFTP_LENGTH_TYPE)sizeof(directory)-1,

AFTP_ENTRY
aftp_query_current_dir(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR directory,
AFTP_LENGTH_TYPE directory_size,
AFTP_LENGTH_TYPE AFTP_PTR returned_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

76 z/OS V1R2.0 CS: APPC Application Suite Programming

&length,
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error in query of current directory.\n");

}
}

Line Flows
The request for the directory name is sent to the AFTP server and the call waits for
a response indicating the success or failure of the query current working directory
operation. The directory name of the current working directory on the AFTP server
will be sent as the response if the query was successful.

Chapter 2. AFTP API Call Reference 77

aftp_query_local_system_info
Use this call to get information about the AFTP client and the computer it is running
on. A connection to the AFTP server is not required before using this call.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

system_info
(output) Buffer to store a text string describing the operating system and AFTP
client version.

Use the AFTP_SYSTEM_INFO_SIZE constant to define the length of this buffer.
Add 1 to the size if you want to be able to add a null terminator to the text in
the buffer.

system_info_size
(input) Size in bytes of the system_info parameter.

returned_length
(output) Number of bytes stored into the system_info parameter.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
unsigned char system_info[AFTP_FILE_NAME_SIZE+1];
AFTP_LENGTH_TYPE system_info_length;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

/*
* Query the AFTP client computer for more information.
*/

aftp_query_local_system_info(
connection_id,
system_info,
(AFTP_LENGTH_TYPE)sizeof(system_info)-1,
&system_info_length,
&aftp_rc);

AFTP_ENTRY
aftp_query_local_system_info(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR system_info,
AFTP_LENGTH_TYPE system_info_size,
AFTP_LENGTH_TYPE AFTP_PTR returned_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

78 z/OS V1R2.0 CS: APPC Application Suite Programming

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error querying AFTP client system.\n");

}
}

Line Flows
There are no line flows for this call.

Chapter 2. AFTP API Call Reference 79

aftp_query_local_version
Use this call to query the AFTP version number on the AFTP client computer. A
connection to the AFTP server is not required before using this call.

Format

Parameters
major_version

(output) The major version number of the AFTP code on the client computer.
For example 5.4, the 5 is the major version number.

minor_version
(output) The minor version number of the AFTP code on the client computer.
For example 5.4, the 4 is the minor version number.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_RETURN_CODE_TYPE aftp_rc;
AFTP_VERSION_TYPE major_version;
AFTP_VERSION_TYPE minor_version;

/*
* There are no prerequisite calls for this call.
*/

/*
* Query the AFTP version number on the
* AFTP client computer.
*/

aftp_query_local_version(
&major_version,
&minor_version,
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error in query of local version.\n");

}
}

Line Flows
There are no line flows for this call.

AFTP_ENTRY
aftp_query_local_version(

AFTP_VERSION_TYPE AFTP_PTR major_version,
AFTP_VERSION_TYPE AFTP_PTR minor_version,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

80 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_query_system_info
Use this call to get information about the AFTP server and the computer it is
running on. A connection to the AFTP server must be established before using this
call.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

system_info
(output) Buffer to store a text string describing the operating system and AFTP
server version.

Use the AFTP_SYSTEM_INFO_SIZE constant to define the length of this buffer.
Add 1 to the size if you want to be able to add a null terminator to the text in
the buffer.

system_info_size
(input) Size in bytes of the system_info parameter.

returned_length
(output) Number of bytes stored into the system_info parameter.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;
unsigned char system_info[AFTP_SYSTEM_INFO_SIZE+1];
AFTP_LENGTH_TYPE system_info_length;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
* a connection to server, use: aftp_connect()
*/

/*
* Query the AFTP server computer for more information.
*/

aftp_query_system_info(
connection_id,
system_info,
(AFTP_LENGTH_TYPE)sizeof(system_info)-1,
&system_info_length,
&aftp_rc);

AFTP_ENTRY
aftp_query_system_info(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR system_info,
AFTP_LENGTH_TYPE system_info_size,
AFTP_LENGTH_TYPE AFTP_PTR returned_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 81

system_info[system_info_length] = '\0';

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error querying AFTP server system.\n");

}
}

Line Flows
The request for the system information is sent to the AFTP server and the call waits
for a response indicating the success or failure of the query system information
operation. The system information of the AFTP server computer will be sent as the
response if the query was successful.

82 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_receive_file
Use this call to receive a single file from the AFTP server. A connection to the AFTP
server must be established before using this call.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

local_file
(input) The name given to the file received on the AFTP client. The format of
this name can either be the native syntax on the AFTP client or the AFTP
common naming convention (described in the z/OS Communications Server:
APPC Application Suite User’s Guide). The file specified can contain either an
absolute or relative path name.

local_file_length
(input) The length of the local_file_name parameter in bytes.

remote_file
(input) The name of the file sent from the AFTP server. The format of this name
can either be the native syntax on the AFTP server or the AFTP common
naming convention (described in the z/OS Communications Server: APPC
Application Suite User’s Guide). The file specified can contain either an
absolute or relative path name.

remote_file_length
(input) The length of the remote_file_name parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;

/* The value used for filespec will vary based on platform:
* VM common naming: filespec="/a/myfile.dat"
* VM native naming: filespec="myfile.dat.a"
* MVS PDS common naming: filespec="/user.mypds/myfile"
* MVS PDS native naming: filespec="'user.mypds(myfile)'"
* MVS sequential common: filespec="/user.qual.myfile"
* MVS sequential native: filespec="'user.qual.myfile'"
*/
static unsigned char AFTP_PTR local_file = "/user.mypos/myfile"; /* MVS */
static unsigned char AFTP_PTR remote_file = "/a/myfile.dat"; /* VM */

/*

AFTP_ENTRY
aftp_receive_file(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR local_file,
AFTP_LENGTH_TYPE local_file_length,
unsigned char AFTP_PTR remote_file,
AFTP_LENGTH_TYPE remote_file_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 83

* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
* a connection to server, use: aftp_connect()
*/

aftp_receive_file(
connection_id,
local_file,
(AFTP_LENGTH_TYPE)strlen(local_file),
remote_file,
(AFTP_LENGTH_TYPE)strlen(remote_file),
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error receiving AFTP file.\n");

}
}

Line Flows
The request to receive the file(s) is sent to the AFTP server. A send file indicator will
be returned to the AFTP client. All records of each file are then sent from the AFTP
server to the AFTP client.

84 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_remove_dir
Use this call to remove a directory from the AFTP server. A connection to the AFTP
server must be established before using this call.

Platform Differences:

1. On VM, this call is not supported. If issued, the call will fail with return code
AFTP_RC_FAIL_NO_RETRY.

2. On MVS, partitioned data sets act as the directory structure. This call will delete
a partitioned data set with the name specified.

Read the z/OS Communications Server: APPC Application Suite User’s Guide for
details on how the directory concept is handled for supported operating systems.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

directory
(input) The directory to be removed. The format of this name can either be the
native syntax on the AFTP server or the AFTP common naming convention
(described in the z/OS Communications Server: APPC Application Suite User’s
Guide). The directory specified can be either an absolute or relative path name.

length
(input) The length of the directory parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;

/* The value used for filespec will vary based on platform:
* VM not supported
* MVS PDS common naming: directory="/user.clist/"
* MVS PDS native naming: directory="'user.clist'"
*/
static unsigned char AFTP_PTR directory = "/user.clist/";

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
* a connection to server, use: aftp_connect()
*/

aftp_remove_dir(

AFTP_ENTRY
aftp_remove_dir(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR directory,
AFTP_LENGTH_TYPE length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 85

connection_id,
directory,
(AFTP_LENGTH_TYPE)strlen(directory),
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error removing AFTP directory.\n");

}

}

Line Flows
The remove directory request and the directory name to remove are sent to the
AFTP server and the call waits for a response indicating the success or failure of
the remove directory operation.

86 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_rename
Use this call to rename a file on the AFTP server. A connection to the AFTP server
must be established before using this call.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

oldfile
(input) The name of the file to be renamed.

The format of this name can either be the native syntax on the AFTP server or
the AFTP common naming convention (described in the z/OS Communications
Server: APPC Application Suite User’s Guide). The file specified can either be
an absolute or relative path name.

oldlength
(input) The length in bytes of the oldfile parameter.

newfile
(input) The new name of the file.

The format of this name can either be the native syntax on the AFTP server or
the AFTP common naming convention (described in the z/OS Communications
Server: APPC Application Suite User’s Guide). The file specified can either be
an absolute or relative path name.

newlength
(input) The length in bytes of the newfile parameter.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;

/* The value used for filespec will vary based on platform:
* VM common naming: newfile="/a/foo.file"
* VM native naming: newfile="foo.file.a"
* MVS PDS common naming: newfile="/user.clist/foo"
* MVS PDS native naming: newfile="'user.clist(foo)'"
* MVS sequential common: newfile="/user.qual.a.foo"
* MVS sequential native: newfile="'user.qual.a.foo'"
*/
static unsigned char AFTP_PTR newfile = "/user.clist/foo";
static unsigned char AFTP_PTR oldfile = "/user.clist/abc";

AFTP_ENTRY
aftp_rename(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR oldfile,
AFTP_LENGTH_TYPE oldlength,
unsigned char AFTP_PTR newfile,
AFTP_LENGTH_TYPE newlength,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 87

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
* a connection to server, use: aftp_connect()
*/

aftp_rename(
connection_id,
oldfile,
(AFTP_LENGTH_TYPE)strlen(oldfile),
newfile,
(AFTP_LENGTH_TYPE)strlen(newfile),
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error renaming AFTP file.\n");

}

}

Line Flows
The rename request, old, and new file names are sent to the AFTP server and the
call waits for a response indicating the success or failure of the rename operation.

88 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_send_file
Use this call to send a single file to the AFTP server. A connection to the AFTP
server must be established before using this call.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

local_file
(input) The name of the file sent from the AFTP client. The format of this name
can either be the native syntax on the AFTP client or the AFTP common
naming convention (described in the z/OS Communications Server: APPC
Application Suite User’s Guide). The file specified can contain either an
absolute or relative path name.

local_file_length
(input) The length of the local_file_name parameter in bytes.

remote_file
(input) The name given to the file received on the AFTP server. The format of
this name can either be the native syntax on the AFTP server or the AFTP
common naming convention (described in the z/OS Communications Server:
APPC Application Suite User’s Guide). The file specified can contain either an
absolute or relative path name.

remote_file_length
(input) The length of the remote_file_name parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;

/* The value used for filespec will vary based on platform:
* VM common naming: filespec="/a/myfile.dat"
* VM native naming: filespec="myfile.dat.a"
* MVS PDS common naming: filespec="/user.mypds/myfile"
* MVS PDS native naming: filespec="'user.mypds(myfile)'"
* MVS sequential common: filespec="/user.qual.myfile"
* MVS sequential native: filespec="'user.qual.myfile'"
*/
static unsigned char AFTP_PTR local_file = "/user.mypos/myfile"; /* MVS */
static unsigned char AFTP_PTR remote_file = "/a/myfile.dat"; /* VM */

/*

AFTP_ENTRY
aftp_send_file(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR local_file,
AFTP_LENGTH_TYPE local_file_length,
unsigned char AFTP_PTR remote_file,
AFTP_LENGTH_TYPE remote_file_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 89

* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
* a connection to server, use: aftp_connect()
*/

aftp_send_file(
connection_id,
local_file,
(AFTP_LENGTH_TYPE)strlen(local_file),
remote_file,
(AFTP_LENGTH_TYPE)strlen(remote_file),
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error sending AFTP file.\n");

}
}

Line Flows
The send file request is sent to the AFTP server, immediately followed by all
records of the files. The call waits for a response indicating the success or failure of
the send file operation.

90 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_set_allocation_size
Use this call to set the AFTP file allocation size. A connection to the AFTP server is
not required before using this call. The file allocation size can be changed at any
time.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

allocation_size
(input) The allocation size in bytes to set for the AFTP file. The default
allocation size value is 0.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

/*
* Set the file allocation size for AFTP file
* transfers.
*/

aftp_set_allocation_size(
connection_id,
500,
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error setting AFTP allocation size.\n");

}
}

Line Flows
There are no line flows for this call.

AFTP_ENTRY
aftp_set_allocation_size(

AFTP_HANDLE_TYPE connection_id,
AFTP_ALLOCATION_SIZE_TYPE allocation_size,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 91

aftp_set_block_size
Use this call to set the file block size. A connection to the AFTP server is not
required before using this call. The file block size may be changed at any time.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

block_size
(input) The AFTP file block size in bytes. The default block size value is 0.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

/*
* Set the file block size for AFTP file
* transfers.
*/

aftp_set_block_size(
connection_id,
512,
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error setting AFTP block size.\n");

}

}

Line Flows
There are no line flows for this call.

AFTP_ENTRY
aftp_set_block_size(

AFTP_HANDLE_TYPE connection_id,
AFTP_BLOCK_SIZE block_size,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

92 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_set_data_type
Use this call to set the data type for file transfers. A connection to the AFTP server
is not required before using this call. The data type can be changed at any time.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

data_type
(input) The data type to be used for subsequent data transfers.
AFTP_ASCII

Transfer files as text files in ASCII.
AFTP_BINARY

Transfer files as a binary sequence of bytes without translation.
AFTP_DEFAULT_DATA_TYPE

Use the data transfer type set in the INI file. If no type is set in the INI
file, use AFTP_ASCII.

This is the default setting.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

/*
* Set the data type for AFTP file
* transfers.
*/

aftp_set_data_type(
connection_id,
AFTP_BINARY,
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error setting AFTP data type.\n");

}

}

AFTP_ENTRY
aftp_set_data_type(

AFTP_HANDLE_TYPE connection_id
AFTP_DATA_TYPE_TYPE data_type,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 93

Line Flows
There are no line flows for this call.

94 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_set_date_mode
Use this call to set the way file dates are handled during data transfer. A connection
to the AFTP server is not required before using this call. The date mode can be
changed at any time.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

date_mode
(input) Specifies the way file dates are handled during data transfer.
AFTP_NEWDATE

Assign the time/date stamp of the time of transfer.
AFTP_OLDDATE

Assign the time/date stamp of the source file. This is the default.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

/*
* Set the date mode for AFTP file
* transfers.
*/

aftp_set_date_mode(
connection_id,
AFTP_OLDDATE,
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error setting AFTP date mode.\n");

}

}

Line Flows
There are no line flows for this call.

AFTP_ENTRY
aftp_set_date_mode(

AFTP_HANDLE_TYPE connection_id
AFTP_DATE_MODE_TYPE date_mode,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 95

aftp_set_destination
Use this call to specify the destination of the AFTP server. This call must be issued
prior to establishing a connection to the AFTP server. After a connection is
established, the destination cannot be changed.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

destination
(input) Identifies the location of the AFTP server. This parameter can be either a
symbolic destination name or a partner LU name.

See the z/OS Communications Server: APPC Application Suite User’s Guide for
information about specifying destinations in the APPC Application Suite.

length
(input) The length of the destination parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
static unsigned char AFTP_PTR destination = "NETWORK.SERVER";
AFTP_RETURN_CODE_TYPE aftp_rc;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*
* You cannot have an open connection.
*/

/*
* Set the partner we want to communicate with - who will
* be running the AFTP server.
*/

aftp_set_destination(
connection_id,
destination,
(AFTP_LENGTH_TYPE)strlen(destination),
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error setting AFTP destination.\n");

}
}

AFTP_ENTRY
aftp_set_destination(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR destination,
AFTP_LENGTH_TYPE length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

96 z/OS V1R2.0 CS: APPC Application Suite Programming

Line Flows
There are no line flows for this call.

Chapter 2. AFTP API Call Reference 97

aftp_set_mode_name
Use this call to specify the mode name for the connection to the AFTP server. This
call can only be invoked prior to the establishment of a connection to the AFTP
server. Once a connection is open, the mode name cannot be changed.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

mode_name
(input) Specifies the mode name to be used on the connection. The default is
#BATCH. The mode name must be 1–8 bytes in length.

length
(input) The length of the mode_name parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
static unsigned char AFTP_PTR mode_name = "#INTER";
AFTP_RETURN_CODE_TYPE aftp_rc;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*
* You cannot have an open connection.
*/

/*
* Set the mode name for the AFTP connection.
*/

aftp_set_mode_name(
connection_id,
mode_name,
(AFTP_LENGTH_TYPE)strlen(mode_name),
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error setting AFTP mode name.\n");

}

}

Line Flows
There are no line flows for this call.

AFTP_ENTRY
aftp_set_mode_name(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR mode_name,
AFTP_LENGTH_TYPE length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

98 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_set_password
Use this call to specify the password for the connection to the AFTP server. This
call can only be invoked prior to the establishment of a connection to the AFTP
server. Once a connection is open, the password cannot be changed. If a password
is set, a user ID also must be set using aftp_set_userid() before connecting to the
AFTP server. Use of this call sets the security type to
AFTP_SECURITY_PROGRAM.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

password
(input) The password to be used on the connection. The password can be 1–8
bytes long.

length
(input) The length of the password parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
static unsigned char AFTP_PTR password = "MYPASS";
AFTP_RETURN_CODE_TYPE aftp_rc;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*
* You cannot have an open connection.
*/

/*
* Set the password for the AFTP connection.
*/

aftp_set_password(
connection_id,
password,
(AFTP_LENGTH_TYPE)strlen(password),
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error setting AFTP password.\n");

}

}

AFTP_ENTRY
aftp_set_password(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR password,
AFTP_LENGTH_TYPE length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 99

Line Flows
There are no line flows for this call.

100 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_set_record_format
Use this call to set the record format for the data transfer. A connection to the AFTP
server is not required before using this call. The record format may be changed at
any time.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

record_format
(input) The record format used for file transfer.
AFTP_DEFAULT_RECORD_FORMAT

Specifies that the system on which the file will be written should use its
own default setting for record format. This is the initial setting.

AFTP_V
Variable length record, unblocked. This is the default.

AFTP_VA
Variable length record, unblocked, ASA print-control characters.

AFTP_VB
Variable length record, blocked.

AFTP_VM
Variable length record, unblocked, machine print-control codes.

AFTP_VS
Variable length record, unblocked, spanned.

AFTP_VBA
Variable length record, blocked, ASA print-control characters.

AFTP_VBM
Variable length record, blocked, machine print-control codes.

AFTP_VBS
Variable length record, blocked, spanned.

AFTP_VSA
Variable length record, unblocked, spanned, ASA print-control
characters.

AFTP_VSM
Variable length record, unblocked, spanned, machine print-control
codes.

AFTP_VBSA
Variable length record, blocked, spanned, ASA print-control characters.

AFTP_VBSM
Variable length record, blocked, spanned, machine print-control codes.

AFTP_F
Fixed length record, unblocked.

AFTP_FA
Fixed length record, unblocked, ASA print-control characters.

AFTP_FB
Fixed length record, blocked.

AFTP_ENTRY
aftp_set_record_format(

AFTP_HANDLE_TYPE connection_id,
AFTP_RECORD_FORMAT_TYPE record_format,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 101

AFTP_FM
Fixed length record, unblocked, machine print-control codes.

AFTP_FBA
Fixed length record, blocked, ASA print-control characters.

AFTP_FBM
Fixed length record, blocked, machine print-control codes.

AFTP_FBS
Fixed length record, blocked, standard.

AFTP_FBSM
Fixed length record, blocked, machine print-control codes, standard.

AFTP_FBSA
Fixed length record, blocked, ASA print-control characters, standard.

AFTP_U
Undefined length record.

AFTP_UA
Undefined length record, ASA print control characters.

AFTP_UM
Undefined length record, machine print control codes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

/*
* Set the record format value for the file transfer.
*/

aftp_set_record_format(
connection_id,
AFTP_VSA,
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error setting AFTP record format.\n");

}

}

Line Flows
There are no line flows for this call.

102 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_set_record_length
Use this call to set the record length for fixed length records, or the maximum
possible record length for variable length records used for data transfer. A
connection to the AFTP server is not required before using this call. The record
length may be changed at any time.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

record_length
(input) The record length for the data transfer specified in bytes. The default
value is 0.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

/*
* Set the record length for the file transfer.
*/

aftp_set_record_length(
connection_id,
64,
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error setting AFTP record length.\n");

}

}

Line Flows
There are no line flows for this call.

AFTP_ENTRY
aftp_set_record_length(

AFTP_HANDLE_TYPE connection_id,
AFTP_RECORD_LENGTH_TYPE record_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 103

aftp_set_security_type
Use this call to specify the type of APPC conversation security to be used. This call
can only be invoked prior to the establishment of a connection to the AFTP server.
Once a connection is open, the APPC security type cannot be changed. If
AFTP_SECURITY_PROGRAM is used for the security type a user ID and password
also must be set using aftp_set_userid() and aftp_set_password(), before
connecting to the AFTP server.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

security_type
(input) The security to be used when connecting to the AFTP server.
AFTP_SECURITY_NONE

No APPC conversation security is used. This is the default unless
CPI-C side information is set otherwise.

AFTP_SECURITY_SAME
The local security information determined at login time will be
transferred to the AFTP server.

AFTP_SECURITY_PROGRAM
A user ID and password will be sent to be verified by the AFTP server.
This security type requires the use of the aftp_set_userid() and
aftp_set_password() calls, or the connection attempt will fail.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*
* You cannot have an open connection.
*/

/*
* Set the APPC conversation security type for the
* AFTP connection.
*/

aftp_set_security_type(
connection_id,
AFTP_SECURITY_SAME,
&aftp_rc);

AFTP_ENTRY
aftp_set_security_type(

AFTP_HANDLE_TYPE connection_id,
AFTP_SECURITY_TYPE security_type,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

104 z/OS V1R2.0 CS: APPC Application Suite Programming

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error setting AFTP security type.\n");

}
}

Line Flows
There are no line flows for this call.

Chapter 2. AFTP API Call Reference 105

aftp_set_tp_name
Use this call to specify the transaction program (TP) name of the AFTP server. This
call can only be invoked prior to the establishment of a connection to the AFTP
server. Once a connection is open, the transaction program name cannot be
changed. The AFTP API defaults the transaction program name on the server to be
AFTPD. This call is not necessary unless you want to experiment with a server
which may not have the same behavior as AFTPD.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

tp_name
(input) The transaction program name of the AFTP server. The transaction
program name can be 1-64 bytes long. The default transaction program name
is AFTPD.

length
(input) The length of the transaction program name parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
static unsigned char AFTP_PTR tp_name = "AFTPME";
AFTP_RETURN_CODE_TYPE aftp_rc;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*
* You cannot have an open connection.
*/

/*
* Set the TP name for the AFTP server.
*/

aftp_set_tp_name(
connection_id,
tp_name,
(AFTP_LENGTH_TYPE)strlen(tp_name),
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error setting AFTP TP name.\n");

}
}

AFTP_ENTRY
aftp_set_tp_name(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR tp_name,
AFTP_LENGTH_TYPE length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

106 z/OS V1R2.0 CS: APPC Application Suite Programming

Line Flows
There are no line flows for this call.

Chapter 2. AFTP API Call Reference 107

aftp_set_trace_filename
Use this call to set the name of the file to which trace information will be written. If
trace is turned on by the aftp_set_trace_level() call and the
aftp_set_trace_filename() call is not issued, the trace file generated will be:
v On VM: ASUITE TRC
v On MVS: DD:SYSOUT
v On OS/2: ASUITE.TRC

Format

Parameters
filename

(input) The name of the file to be used for trace output.

filename_length
(input) The length of the filename parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_RETURN_CODE_TYPE rc;

/* The value used for filespec will vary based on platform:
* VM common naming: filename="/a/aftp.trace"
* VM native naming: filename="aftp.trace.a"
* MVS PDS common naming: filename="/user.clist/aftptrac"
* MVS PDS native naming: filename="'user.clist(aftptrac)'"
* MVS sequential common: filename="/user.qual.a.aftptrac"
* MVS sequential native: filename="'user.qual.a.aftptrac'"
*/
static unsigned char AFTP_PTR filename = "/user.clist/aftptrac";

/*
* There are no prerequisite calls for this call.
*/

aftp_set_trace_filename(
filename,
(AFTP_LENGTH_TYPE)strlen(filename),
&rc);

if (rc != AFTP_RC_OK) {
fprintf(stderr, "Error setting tracing filename\n");

}
}

Line Flows
There are no line flows for this call.

AFTP_ENTRY
aftp_set_trace_filename(

unsigned char AFTP_PTR filename,
AFTP_LENGTH_TYPE filename_length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

108 z/OS V1R2.0 CS: APPC Application Suite Programming

aftp_set_trace_level
Use this call to set the level of tracing to use for AFTP activities. The new trace
level will take effect immediately upon making this call. The trace output will be
captured in the file specified in the aftp_set_trace_filename() call, which must be
issued before this call.

Format

Parameters
trace_level

(input) The amount of trace information to be generated. The constants from
AFTP_LVL_NO_TRACING to AFTP_LVL_MAX_TRACE_LVL incrementally
increase the amount of trace information.
AFTP_LVL_NO_TRACING

No data will be written to the trace log.
AFTP_LVL_API

Traces crossings of the API boundary.
AFTP_LVL_MAX_TRACE_LVL

Provides the maximum amount of trace information.

Other trace levels are reserved for diagnosing problems with the assistance of
the IBM Support Center.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

/*
* The following calls must be issued here:
* aftp_set_trace_filename()
*/

/*
* Turn on the tracing.
*/

aftp_set_trace_level(trace_level, &rc);

if (rc != AFTP_RC_OK) {
fprintf(stderr, "Error setting the trace level\n");

}
}

Line Flows
There are no line flows for this call.

AFTP_ENTRY
aftp_set_trace_level(

AFTP_TRACE_LEVEL_TYPE trace_level,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

Chapter 2. AFTP API Call Reference 109

aftp_set_userid
Use this call to specify the user ID for the connection to the AFTP server. This call
can only be invoked prior to the establishment of a connection to the AFTP server.
Once a connection is open, the user ID cannot be changed. If a user ID is set, a
password also must be set using aftp_set_password() before connecting to the
AFTP server. Use of this call sets the security type to
AFTP_SECURITY_PROGRAM.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

userid
(input) The user ID to be used on the connection. The user ID can be 1–8 bytes
long.

length
(input) The length of the userid parameter in bytes.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
static unsigned char AFTP_PTR userid = "LBONANNO";
AFTP_RETURN_CODE_TYPE aftp_rc;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*
* You cannot have an open connection.
*/

/*
* Set the user ID for the AFTP connection.
*/

aftp_set_userid(
connection_id,
userid,
(AFTP_LENGTH_TYPE)strlen(userid),
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error setting user ID.\n");

}
}

AFTP_ENTRY
aftp_set_userid(

AFTP_HANDLE_TYPE connection_id,
unsigned char AFTP_PTR userid,
AFTP_LENGTH_TYPE length,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

110 z/OS V1R2.0 CS: APPC Application Suite Programming

Line Flows
There are no line flows for this call.

Chapter 2. AFTP API Call Reference 111

aftp_set_write_mode
Use this call to set the way existing files will be handled during data transfer. A
connection to the AFTP server is not required before using this call. The write mode
may be changed at any time.

Format

Parameters
connection_id

(input) An AFTP connection object originally created with aftp_create().

write_mode
(input) The method used to write a file if a copy of the file already exists. If the
file does not exist on the target, the new file will be created.
AFTP_REPLACE

Transferred file will replace the existing file. This is the default.
AFTP_APPEND

Transferred file will be appended to the existing file.

return_code
(output) See “Chapter 3. AFTP Return Codes” on page 113 for the list of
possible return codes.

Example
{

AFTP_HANDLE_TYPE connection_id;
AFTP_RETURN_CODE_TYPE aftp_rc;

/*
* Before issuing the example call, you must have:
* a connection_id, use: aftp_create()
*/

/*
* Set the write mode for the AFTP
* file transfer.
*/

aftp_set_write_mode(
connection_id,
AFTP_REPLACE,
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {
fprintf(stderr, "Error setting AFTP write mode.\n");

}
}

Line Flows
There are no line flows for this call.

AFTP_ENTRY
aftp_set_write_mode(

AFTP_HANDLE_TYPE connection_id,
AFTP_WRITE_MODE_TYPE write_mode,
AFTP_RETURN_CODE_TYPE AFTP_PTR return_code);

112 z/OS V1R2.0 CS: APPC Application Suite Programming

Chapter 3. AFTP Return Codes

These are the possible return codes that can be issued for each AFTP API call.

AFTP_RC_BUFFER_TOO_SMALL
The buffer supplied by the caller for output data was too small to hold the
data.

AFTP_RC_COMM_CONFIG_LOCAL
The call failed due to a local configuration error. Communications will fail
until the configuration problem is resolved.

AFTP_RC_COMM_CONFIG_REMOTE
The call failed due to a remote configuration error. Communications will fail
until the configuration problem is resolved.

AFTP_RC_COMM_FAIL_NO_RETRY
The call failed due to a communications problem. The call will not
successfully complete using the current parameters.

AFTP_RC_COMM_FAIL_RETRY
The call failed due to a communications problem. The call may successfully
complete if tried again.

AFTP_RC_FAIL_FATAL
A serious system error has occurred; no calls can complete successfully.

AFTP_RC_FAIL_INPUT_ERROR
The call may successfully complete after new input parameters are
supplied.

AFTP_RC_FAIL_NO_RETRY
The call will not successfully complete using the current parameters.

AFTP_RC_FAIL_RETRY
The call may successfully complete if tried again.

AFTP_RC_HANDLE_NOT_VALID
The call failed because the AFTP connection object passed into the AFTP
API was not valid.

AFTP_RC_OK
The call completed successfully.

AFTP_RC_PARAMETER_CHECK
The call failed due to an error in one of the parameters passed into the
AFTP API.

AFTP_RC_PROGRAM_INTERNAL_ERROR
The call failed due to a programming error.

AFTP_RC_SECURITY_NOT_VALID
The call failed because of APPC security.

AFTP_RC_STATE_CHECK
The call failed because the current AFTP API call was made when AFTP
was not in the correct state required for the current call. For example, you
will get a state check error if you try to use aftp_format_error() when no
error has occurred.

© Copyright IBM Corp. 1994, 2001 113

114 z/OS V1R2.0 CS: APPC Application Suite Programming

Part 2. APPC Name Server (ANAME) Programming Interface

© Copyright IBM Corp. 1994, 2001 115

116 z/OS V1R2.0 CS: APPC Application Suite Programming

Chapter 4. API for the APPC NameServer

The APPC NameServer (ANAME) application programming interface (API) is a set
of C procedures that provide APPC name resolution. This API is referred to as the
ANAME API and allows the programmer to access routines that will interact with
any ANAME server.

The ANAME API adheres to the ANAME line flow standards. All ANAME client
applications will send the same set of line flows over the network to the ANAME
server.

How the ANAME API Works
This section is an overview of how the ANAME API works from the perspective of
the application programmer. This is a logical overview instead of an actual
explanation of what is sent and received to and from the ANAME server. However,
this logical overview must be understood to determine the ANAME API calls that are
required by an application. The actual line flows for each call are briefly described
in “Chapter 5. ANAME API Call Reference” on page 123.

The ANAME API handles requests in the following manner:

1. A connection object is created on the client. This connection object contains:

v Information that is relevant to the setup and maintenance of the connection
with the ANAME server

v A data object for this connection

2. A data object is built on the client side containing data that is specified by the
client program. A data object is not accessed directly, instead it is accessed
through the connection object is associated with. Depending on the number of
fields that are explicitly set, this is one full or partial record.

3. The data object is sent to the ANAME server with a code indicating the
requested function.

4. The ANAME server receives the data object and processes the request based
on the fields that are set in the received data object.

5. If the function requested was a query, data records must be returned to the
requesting client. The ANAME server sends the records one at a time back to
the client to be used by the application program. These records must be
individually received by the application program.

An interface is provided to turn on and off the trace facility. The trace settings will
be maintained throughout the existence of one or many connection objects.

ANAME Defined Constants, Standard Types, and Conventions
This section describes constants, types, and conventions for use in the ANAME API
that are not standard to C programming.

Defined Constants
ANAME constant definitions have been created for the sizes of the buffers that are
passed across the API. All buffers of the specified type must be at least the size of
the defined constant to guarantee the requested call will not fail with a buffer size
error.

© Copyright IBM Corp. 1994, 2001 117

The constants are defined in the header file for the ANAME API.

Table 3. ANAME Size Constants

Constant Minimum Buffer Size For Value

ANAME_FQ_SIZE Fully qualified LU name 17

ANAME_GN_SIZE Group name 64

ANAME_HND_SIZE Connection handle 8

ANAME_DEST_SIZE Destination name 17

ANAME_TP_SIZE Transaction program name 64

ANAME_UN_SIZE User name 64

Standard Types
Type definitions are available for many parameters to the ANAME API calls. For
example, the ANAME type ANAME_RETURN_CODE_TYPE is an alias for the C
type unsigned long.

Use the ANAME types instead of the corresponding C types. Doing so will protect
you from changes to the parameters in future releases. If you have used the
ANAME types, you will only need to recompile your code to use the new API
definitions. If you have used the C types, you will need to modify your program
source to reflect changes to the new C types.

The ANAME API avoids complex structures and pointers to structures for type
definitions. These complex structures might not be supported in all languages. The
only exception is the string construct which is found in many languages.

Table 4. ANAME Standard Types

Type Name Type to Define Actual Type Size

ANAME_DATA_RECEIVED_TYPE Data received variable Unsigned long Long (4 bytes)

ANAME_DESTINATION_TYPE Destination name of the
data record

Unsigned character
ARRAY

[18]

ANAME_DETAIL_LEVEL_TYPE Detail level to be passed
to the
aname_format_error()
call

Unsigned long Long (4 bytes)

ANAME_HANDLE_TYPE ANAME connection
object

Unsigned character
array

[8]

ANAME_LENGTH_TYPE Any buffer length Unsigned long Long (4 bytes)

ANAME_RETURN_CODE_TYPE ANAME return code Unsigned long Long (4 bytes)

ANAME_TRACE_LEVEL_TYPE Trace level Unsigned long Long (4 bytes)

ANAME_DUP_FLAG_TYPE Duplicate flag variable Unsigned long Long (4 bytes)

Conventions

Null-Terminated Strings
The ANAME API does not require input strings to be null-terminated. The ANAME
API also does not guarantee that the output strings are null terminated. The return
size does not include the null terminator in the size, if there is any.

118 z/OS V1R2.0 CS: APPC Application Suite Programming

The C programmer should be aware of the fact that strings are handled differently
within ANAME than they are in the C standard library. All API calls receiving strings
as input require both the string itself, and the length of the string. The strlen()
function can be used for this. The null terminator must not be counted as part of the
string length. API calls which output strings require three string related parameters:

v The string.

v The length of the string buffer that has been allocated by the calling program.
Both of these are input to the API, with the string being modified.

v The length of the string that is output. ANAME output strings are not null
terminated. In order for the C programmer to use them as standard C strings, a
null character must be added to the end of the string.

ANAME_ENTRY
The ANAME API calls do not return a value. Rather, the return code parameter is
set to indicate the success or failure of the call. The programmer should check the
return code parameter after each call and handle error values appropriately.

The C keyword void is not used for entry points in the ANAME API. Instead,
ANAME_ENTRY has been defined. ANAME_ENTRY is defined differently
depending on the operating system the ANAME client will be created on.

ANAME_PTR
The C pointer indicator ’*’ is not used in the ANAME API prototypes. Instead,
ANAME_PTR has been defined. ANAME_PTR indicates that the address of the
value should be passed, rather than the actual value. ANAME_PTR is defined
differently depending on the operating system the ANAME client will be created on.

Compiling the ANAME Application

MVS
To develop an application that uses the ANAME API on MVS, follow these steps:

Note: This process assumes all ANAME program files have been successfully
installed with the provided JCL for installing ANAME.

1. Include this header file in your source modules: APPMAPIH.

2. Define CM_MVS when you compile your source.

3. Edit the APPMAPIJ JCL file and make the changes indicated in the
prolog comments at the top of the file.

4. Submit the APPMAPIJ JCL.

VM
To access the ANAME API calls from your application, follow these steps:

1. Include the following header file in your source modules: APPMAPIH H.

2. Define CM_VM when you compile your source.

3. Add APPMAPIL TXTLIB to your GLOBAL TXTLIB statement. All textdecks are
packaged into this textlib.

Chapter 4. API for the APPC NameServer 119

Overview of API Calls
The calls of the ANAME API can be organized into the following categories:
v Create or destroy an ANAME connection object
v Set values in the connection object
v Set values in the data object
v Add a record to the database
v Remove records from the database
v Obtain records from the database
v Access values in returned records
v Obtain error information
v Turn tracing on and off
v Use system administrator functions

The following sections give a high-level explanation of the calls available in each
category. For information on the syntax of the calls and parameters required, see
“Chapter 5. ANAME API Call Reference” on page 123.

Create or Destroy an ANAME Connection Object
The connection object represents an object-oriented approach to ANAME. All other
ANAME API calls (with the exception of the trace calls) require a connection object
as an input parameter. When the program has finished using ANAME API calls, it
should destroy the connection object.

aname_create()
Creates an ANAME connection object and assigns a unique identifier to it.
The connection object is accessed by its connection id. The connection
object is never automatically destroyed. This allows you to connect to an
ANAME server once, or reconnect numerous times using the same ANAME
connection object.

aname_destroy()
Destroys the ANAME connection object and recovers all resources
associated with it. Once the ANAME connection object has been destroyed,
that object must not be used again. If you need a connection object again,
create another one.

Set Values in the Connection Object
Specify which server and/or database is accessed by setting the destination name
for the connection.

aname_set_destination()
Identifies the destination to be used for the connection.

Set Values in the Data Object
The ANAME client can assign values to fields of a data object accessed by the
connection object. These fields correspond to the fields of the records in the
database on the ANAME server. Set calls are used to assign values to the fields of
the data object.

aname_set_fqlu_name()
Assigns a value to the fully qualified LU name field of the data object.

The fully qualified LU name field of the data object can be set for any query
request, but its use for register and delete requests is limited. The fully
qualified LU name of the user is automatically generated by ANAME during
register and delete operations. This value can be overridden only by an

120 z/OS V1R2.0 CS: APPC Application Suite Programming

ANAME administrator. For example, if a user other than the ANAME
administrator issues this call to set the fully qualified LU name and then
issues an aname_register() call, the register call will fail.

aname_set_group_name()
Assigns a value to the group name field of the data object.

aname_set_tp_name()
Assigns a value to the transaction program name field of the data object.

This call does not set the transaction program name for the connection. The
transaction program name in this case is simply treated as data in the
record.

aname_set_user_name()
Assigns a value to the user name field of the data object.

Add a Record to the Database
You can add a record to the database using the register call. The register call
causes the client data object to be sent to the ANAME server.

aname_register()
Adds the client data object to the ANAME database.

For this call to succeed, at least one field in the data object other than the
fully qualified LU name must be set.

Remove Records from the Database
You can remove records from the database using the delete call. The delete call
causes the client data object to be sent to the ANAME server.

aname_delete()
Removes all records from the ANAME database which contain all values
specified in the client data object.

For this call to succeed, at least one field in the data object other than the
fully qualified LU name must be set.

Obtain Records from the Database
A program can request records from the database with the query call. The query
call causes the client data object to be sent to the ANAME server. All records
containing the values set in the client data object are returned to the program.

Obtaining the records is a two-step process. The first step is to make the request.
The second step is to receive the returned records so the information in the records
can be used by the program.

aname_query()
Sends the client data object to the ANAME server. The ANAME server will
process the request by finding all records in the ANAME database that
contain all values in the client data object.

This call will not succeed unless at least one of the fields in the data object
has been set.

aname_receive()
Finds the next data record which was returned from the ANAME server and
makes the record accessible to the program making the query request.

This call will only succeed after a query call has been issued.

Chapter 4. API for the APPC NameServer 121

This call must be issued before values in a new record received from the
server are accessed.

Access Values in Returned Records
Once a data record has been received, the values in the fields can be accessed for
use in a program via the extract calls.

aname_extract_fqlu_name()
Fills a buffer with the value in the fully qualified LU name field of the
returned record.

aname_extract_group_name()
Fills a buffer with the value in the group name field of the returned record.

aname_extract_tp_name()
Fills a buffer with the value in the transaction program name field of the
returned record.

aname_extract_user_name()
Fills a buffer with the value in the user name field of the returned record.

Obtain Error Information
A call is provided for a programmer to return error information to the application
user. The error information returned in a user-supplied buffer is formatted for
displaying or logging.

aname_format_error()
Fills a buffer with a printable text string for displaying or logging.

Turn Tracing On and Off
The ANAME program provides a tracing facility to monitor the transaction below the
API. You can control the amount of trace information generated and specify the
name of the file in which to put the trace output.

aname_set_trace_filename()
Specifies the name of the file to which trace output should be written. If this
call is not made, the default trace filename will be used.

If this call is not made, no trace output is generated.

Use System Administrator Functions
There are certain functions that will only succeed if the request is made by a
system administrator LU. An LU is determined to be the LU of the system
administrator if it is configured on the ANAME server. See the z/OS
Communications Server APPC Application Suite Administration for information on
configuring the ANAME server.

aname_set_duplicate_register()
Specifies whether duplicate user names can be added to the database. The
system administrator has authority to add records to the database with a
user name that matches an existing user name. This allows name services
to be used by multiple LU systems.

122 z/OS V1R2.0 CS: APPC Application Suite Programming

Chapter 5. ANAME API Call Reference

This chapter provides an alphabetical reference for all of the API calls for the APPC
NameServer (ANAME). Program examples are provided for each call to illustrate its
use in a program.

© Copyright IBM Corp. 1994, 2001 123

aname_create
Use this call to create an ANAME connection object which can be used to connect
to an ANAME server. This call will allocate memory to store the function information
and returns a handle used to access that memory space.

Format

Parameters
connection_id

(output) Handle of the ANAME connection object that was created by this call.
Most subsequent ANAME calls require use a previously-created ANAME
connection object.

return_code
(output) See “Chapter 6. ANAME Return Codes” on page 151 for possible return
codes.

Example
{

ANAME_HANDLE_TYPE handle;
ANAME_RETURN_CODE_TYPE rc;

aname_create(handle, &rc);
}

Line Flows
There are no line flows for this call.

ANAME_ENTRY
aname_create(

ANAME_HANDLE_TYPE connection_id,
ANAME_RETURN_CODE_TYPE ANAME_PTR return_code);

124 z/OS V1R2.0 CS: APPC Application Suite Programming

aname_delete
Use this call to remove records from the ANAME database. At least one field in the
client data object other than the fully qualified LU name must be set with a valid
value before this call is issued.

Format

Parameters
connection_id

(input) An ANAME connection object that was created by a previous
aname_create() call.

return_code
(output) See “Chapter 6. ANAME Return Codes” on page 151 for possible return
codes.

Example
{

ANAME_HANDLE_TYPE handle;
ANAME_RETURN_CODE_TYPE rc;

/*
* The following calls must be issued here:
* aname_create()
* an aname_set_xxx call (for example aname_set_user_name())
*/

if (rc == ANAME_RC_OK) {

aname_delete(handle, &rc);
}

}

Line Flows
The data object with values set by the ANAME client is sent to the ANAME server.
The call waits for a response indicating the success or failure of the delete request.

ANAME_ENTRY
aname_delete(

ANAME_HANDLE_TYPE connection_id,
ANAME_RETURN_CODE_TYPE ANAME_PTR return_code);

Chapter 5. ANAME API Call Reference 125

aname_destroy
Use this call to destroy an ANAME connection object which was created with the
aname_create() call. This call will free memory that was used to store the function
information. The connection id is not valid after this call completes successfully.

Format

Parameters
connection_id

(input) An ANAME connection object that was created by a previous
aname_create() call. Following this call, the connection id will be invalid until
another aname_create() is issued.

return_code
(output) See “Chapter 6. ANAME Return Codes” on page 151 for possible return
codes.

Example
{

ANAME_HANDLE_TYPE handle;
ANAME_RETURN_CODE_TYPE rc;

/*
* The following calls must be issued here:
* aname_create()
* some processing
*/

aname_destroy(handle, &rc);

}

Line Flows
There are no line flows for this call.

ANAME_ENTRY
aname_destroy(

ANAME_HANDLE_TYPE connection_id,
ANAME_RETURN_CODE_TYPE ANAME_PTR return_code);

126 z/OS V1R2.0 CS: APPC Application Suite Programming

aname_extract_fqlu_name
Use this call to obtain the value in the fully qualified LU name field of a record
returned from the ANAME server and received at the ANAME client. Previous
aname_query() and aname_receive() calls must have been issued.

Format

Parameters
connection_id

(input) An ANAME connection object that was created by a previous
aname_create() call.

fqlu_name
(output) Value in the fully qualified LU name field of the current data record
received from the ANAME server.

Use the ANAME_FQ_SIZE constant to define the length of this buffer. Add 1 to
the size if you want to be able to add a null terminator to the text in the buffer.

buffer_size
(input) Size of the buffer supplied.

fqlu_name_length
(output) Length of the fully qualified LU name value returned.

return_code
(output) See “Chapter 6. ANAME Return Codes” on page 151 for possible return
codes.

Example
{

unsigned char fqlu_name[ANAME_FQ_SIZE + 1];
ANAME_LENGTH_TYPE fqlu_name_length;
ANAME_HANDLE_TYPE handle;
ANAME_RETURN_CODE_TYPE rc;

/*
* The following calls must be issued here:
* aname_create()
* an aname_set_xxx call (for example, aname_set_user_name())
* aname_query()
* aname_receive()
*/

aname_extract_fqlu_name(
handle,
fqlu_name,
ANAME_FQ_SIZE,
&fqlu_name_length,
&rc);

}

ANAME_ENTRY
aname_extract_fqlu_name(

ANAME_HANDLE_TYPE connection_id,
unsigned char ANAME_PTR fqlu_name,
ANAME_LENGTH_TYPE buffer_size,
ANAME_LENGTH_TYPE ANAME_PTR fqlu_name_length,
ANAME_RETURN_CODE_TYPE ANAME_PTR return_code);

Chapter 5. ANAME API Call Reference 127

Line Flows
There are no line flows for this call.

128 z/OS V1R2.0 CS: APPC Application Suite Programming

aname_extract_group_name
Use this call to obtain the value in the group name field of a record returned from
the ANAME server and received at the ANAME client. Previous aname_query() and
aname_receive() calls must have been issued.

Format

Parameters
connection_id

(input) An ANAME connection object that was created by a previous
aname_create() call.

group_name
(output) Value in the group name field of the current data record received from
the ANAME server.

Use the ANAME_GN_SIZE constant to define the length of this buffer. Add 1 to
the size if you want to be able to add a null terminator to the text in the buffer.

buffer_size
(input) Size of the buffer supplied.

group_name_length
(output) Length of the group name value returned.

return_code
(output) See “Chapter 6. ANAME Return Codes” on page 151 for possible return
codes.

Example
{

unsigned char group_name[ANAME_GN_SIZE + 1];
ANAME_LENGTH_TYPE group_name_length;
ANAME_HANDLE_TYPE handle;
ANAME_RETURN_CODE_TYPE rc;

/*
* The following calls must be issued here:
* aname_create()
* an aname_set_xxx call (for example, aname_set_user_name())
* aname_query()
* aname_receive()
*/

aname_extract_group_name(
handle,
group_name,
ANAME_GN_SIZE,
&group_name_length,
&rc);

}

ANAME_ENTRY
aname_extract_group_name(

ANAME_HANDLE_TYPE connection_id,
unsigned char ANAME_PTR group_name,
ANAME_LENGTH_TYPE buffer_size,
ANAME_LENGTH_TYPE ANAME_PTR group_name_length,
ANAME_RETURN_CODE_TYPE ANAME_PTR return_code);

Chapter 5. ANAME API Call Reference 129

Line Flows
There are no line flows for this call.

130 z/OS V1R2.0 CS: APPC Application Suite Programming

aname_extract_tp_name
Use this call to obtain the value in the transaction program name field of a record
returned from the ANAME server and received at the ANAME client. Previous
aname_query() and aname_receive() calls must have been issued.

Format

Parameters
connection_id

(input) An ANAME connection object that was created by a previous
aname_create() call.

tp_name
(output) Value in the transaction program name field of the current data record
received from the ANAME server.

Use the ANAME_TP_SIZE constant to define the length of this buffer. Add 1 to
the size if you want to be able to add a null terminator to the text in the buffer.

buffer_size
(input) Size of the buffer supplied.

tp_name_length
(output) Length of the transaction program name value returned.

return_code
(output) See “Chapter 6. ANAME Return Codes” on page 151 for possible return
codes.

Example
{

unsigned char tp_name[ANAME_TP_SIZE + 1];
ANAME_LENGTH_TYPE tp_name_length;
ANAME_HANDLE_TYPE handle;
ANAME_RETURN_CODE_TYPE rc;

/*
* The following calls must be issued here:
* aname_create()
* an aname_set_xxx call (for example, aname_set_user_name())
* aname_query()
* aname_receive()
*/

aname_extract_tp_name(
handle,
tp_name,
ANAME_TP_SIZE,
&tp_name_length,
&rc);

}

ANAME_ENTRY
aname_extract_tp_name(

ANAME_HANDLE_TYPE connection_id,
unsigned char ANAME_PTR tp_name,
ANAME_LENGTH_TYPE buffer_size,
ANAME_LENGTH_TYPE ANAME_PTR tp_name_length,
ANAME_RETURN_CODE_TYPE ANAME_PTR return_code);

Chapter 5. ANAME API Call Reference 131

Line Flows
There are no line flows for this call.

132 z/OS V1R2.0 CS: APPC Application Suite Programming

aname_extract_user_name
Use this call to obtain the value in the user name field of a record returned from the
ANAME server and received at the ANAME client. Previous aname_query() and
aname_receive() calls must have been issued.

Format

Parameters
connection_id

(input) An ANAME connection object that was created by a previous
aname_create() call.

user_name
(output) Value in the user name field of the current data record received from
the ANAME server.

Use the ANAME_UN_SIZE constant to define the length of this buffer. Add 1 to
the size if you want to be able to add a null terminator to the text in the buffer.

buffer_size
(input) Size of the buffer supplied.

user_name_length
(output) Length of the user name value returned.

return_code
(output) See “Chapter 6. ANAME Return Codes” on page 151 for possible return
codes.

Example
{

unsigned char user_name[ANAME_UN_SIZE + 1];
ANAME_LENGTH_TYPE user_name_length;
ANAME_HANDLE_TYPE handle;
ANAME_RETURN_CODE_TYPE rc;

/*
* The following calls must be issued here:
* aname_create()
* an aname_set_xxx call (for example, aname_set_fqlu_name())
* aname_query()
* aname_receive()
*/

aname_extract_user_name(
handle,
user_name,
ANAME_UN_SIZE,
&user_name_length,
&rc);

}

ANAME_ENTRY
aname_extract_user_name(

ANAME_HANDLE_TYPE connection_id,
unsigned char ANAME_PTR user_name,
ANAME_LENGTH_TYPE buffer_size,
ANAME_LENGTH_TYPE ANAME_PTR user_name_length,
ANAME_RETURN_CODE_TYPE ANAME_PTR return_code);

Chapter 5. ANAME API Call Reference 133

Line Flows
There are no line flows for this call.

134 z/OS V1R2.0 CS: APPC Application Suite Programming

aname_format_error
Use this call after an error return code to obtain additional error information. This
call returns the error information in a string that is formatted for displaying or
logging.

Format

Parameters
connection_id

(input) An ANAME connection object that was created by a previous
aname_create() call.

detail_level
(input) Numeric value defining the amount of error information that should be
returned in the supplied buffer. These values can be OR’ed together to retrieve
specific sets of information. For example, if the primary message and the error
log information should be returned, specify
(ANAME_DETAIL_RC | ANAME_DETAIL_LOG).
ANAME_DETAIL_RC

Return the return code value, location of the error, primary message
number and primary message text.

ANAME_DETAIL_SECOND
Return the secondary message number and message text if one exists.

ANAME_DETAIL_LOG
Return the error log specific text with message number if applicable.

ANAME_DETAIL_INFO
Return the informational message and message number if applicable.

ANAME_DETAIL_ALL
Return all information.

error_string
(output) String containing error information which is formatted for display or
logging.

The size of the error string will vary, but will not be more than 2 Kbytes.

error_string_size
(input) Size of the error_string buffer supplied.

returned_length
(output) Size of the error string returned in the error_string buffer.

return_code
(output) See “Chapter 6. ANAME Return Codes” on page 151 for possible return
codes.

ANAME_ENTRY
aname_show_error(

ANAME_HANDLE_TYPE connection_id,
ANAME_DETAIL_LEVEL_TYPE detail_level,
unsigned char ANAME_PTR error_string,
ANAME_LENGTH_TYPE error_string_size,
ANAME_LENGTH_TYPE ANAME_PTR returned_length,
ANAME_RETURN_CODE_TYPE ANAME_PTR return_code);

Chapter 5. ANAME API Call Reference 135

Example
{

ANAME_HANDLE_TYPE handle;
ANAME_DETAIL_LEVEL_TYPE detail_level = ANAME_DETAIL_LOG;
unsigned char error_string[2048 + 1];
ANAME_LENGTH_TYPE error_string_length_out;
ANAME_RETURN_CODE_TYPE rc;

/*
* At least one ANAME call that returned with an error return code
* must have been issued here.
*/

aname_format_error(
handle,
detail_level,
error_string,
1024,
error_string_size_out,
&rc);

}

Line Flows
There are no line flows for this call.

136 z/OS V1R2.0 CS: APPC Application Suite Programming

aname_query
Use this call to send the client data object to the ANAME server requesting records
in return. Records will be returned which contain the values specified in the
supplied data object. At least one field in the data object must have been set with a
valid value before this call is issued.

Format

Parameters
connection_id

(input) An ANAME connection object that was created by a previous
aname_create() call.

return_code
(output) See “Chapter 6. ANAME Return Codes” on page 151 for possible return
codes.

Example
{

ANAME_HANDLE_TYPE handle;
ANAME_RETURN_CODE_TYPE rc;

/*
* The following calls must be issued here:
* aname_create()
* an aname_set_xxx call (for example, aname_set_fqlu_name())
*/

aname_query(handle, &rc);
}

Line Flows
The data object containing values set by the client is sent to the ANAME server.
The call waits for:

1. A response from the ANAME server indicating whether the query request
succeeded. If the response indicates an error occurred, the call returns to the
calling program.

2. One data record for each matching record in the ANAME database.

3. A response indicating the last data record has been sent.

All data is stored at the ANAME client before the query call returns to the program.

ANAME_ENTRY
aname_query(

ANAME_HANDLE_TYPE connection_id,
ANAME_RETURN_CODE_TYPE ANAME_PTR return_code);

Chapter 5. ANAME API Call Reference 137

aname_receive
Use this call to increment the current record pointer to the next available record.
After a query call is issued, each record must be individually received before the
contents in the record are available to the application. A successful query call must
have been issued before the receive call will succeed.

Format

Parameters
connection_id

(input) An ANAME connection object that was created by a previous
aname_create() call.

data_received
(output) Value indicating if a new record is available for the application.
ANAME_DR_DATA_RECEIVED_OK

There was another record and the values in that record can now be
extracted and used by the program.

ANAME_DR_NO_MORE_DATA
There was not another record to receive.

return_code
(output) See “Chapter 6. ANAME Return Codes” on page 151 for possible return
codes.

Example
{

ANAME_HANDLE_TYPE handle;
ANAME_RETURN_CODE_TYPE rc;
ANAME_DATA_RECEIVED_TYPE data_received;

/*
* The following calls must be issued here:
* aname_create()
* an aname_set_xxx call (for example, aname_set_fqlu_name())
* aname_query()
*/

aname_receive(handle, &data_received, &rc);
}

Line Flows
There are no line flows for this call.

ANAME_ENTRY
aname_receive(

ANAME_HANDLE_TYPE connection_id,
ANAME_DATA_RECEIVED_TYPE ANAME_PTR data_received,
ANAME_RETURN_CODE_TYPE ANAME_PTR return_code);

138 z/OS V1R2.0 CS: APPC Application Suite Programming

aname_register
Use this call to add a record containing the values in the client data object to the
ANAME database. At least one field in the data object other than the fully qualified
LU name must be set with a valid value before this call is issued.

Format

Parameters
connection_id

(input) An ANAME connection object that was created by a previous
aname_create() call.

return_code
(output) See “Chapter 6. ANAME Return Codes” on page 151 for possible return
codes.

Example
{

ANAME_HANDLE_TYPE handle;
ANAME_RETURN_CODE_TYPE rc;

/*
* The following calls must be issued here:
* aname_create()
* an aname_set_xxx call (for example, aname_set_fqlu_name())
*/

aname_register(handle, &rc);
}

Line Flows
The data object with values set by the ANAME client is sent to the ANAME server.
The call waits for a response indicating the success or failure of the register
request.

ANAME_ENTRY
aname_register(

ANAME_HANDLE_TYPE connection_id,
ANAME_RETURN_CODE_TYPE ANAME_PTR return_code);

Chapter 5. ANAME API Call Reference 139

aname_set_destination
Use this call to assign a value to the destination field of the client data object which
will be sent to the ANAME server.

Format

Parameters
connection_id

(input) An ANAME connection object that was created by a previous
aname_create() call.

destination
(input) Value to be assigned to the destination field of the data record to be sent
to the ANAME server. The destination can be a symbolic destination name, a
fully qualified LU name, or a locally-defined LU alias. If the value is a symbolic
destination name, it must be defined in the ANAME client’s CPI-C side
information. The definition in the CPI-C side information specifies the partner
name and the transaction program to be invoked on the server.

Use the ANAME_DEST_SIZE constant to define the length of this buffer. Add 1
to the size if you want to be able to add a null terminator to the text in the
buffer.

destination_length
(input) Length of the destination parameter that was supplied on this call.

return_code
(output) See “Chapter 6. ANAME Return Codes” on page 151 for possible return
codes.

Example
{

unsigned char destination[ANAME_DEST_SIZE + 1];
ANAME_HANDLE_TYPE handle;
ANAME_RETURN_CODE_TYPE rc;

/*
* The following calls must be issued here:
* aname_create()
*/

strcpy(destination, "MYANAMED");
aname_set_destination(

handle,
destination,
strlen(destination),
&rc);

}

Line Flows
There are no line flows for this call.

ANAME_ENTRY
aname_set_destination(

ANAME_HANDLE_TYPE connection_id,
unsigned char ANAME_PTR destination,
ANAME_LENGTH_TYPE destination_length,
ANAME_RETURN_CODE_TYPE ANAME_PTR return_code);

140 z/OS V1R2.0 CS: APPC Application Suite Programming

aname_set_duplicate_register
Use this call to specify whether the record being registered may contain a user
name that currently exists in the database and that the matching user name in the
database may contain a different value in the fully qualified LU name field than the
value in the record being registered. This call must be made before the register call
is made for the record that may have a duplicate user name.

The duplicate register setting remains until it is explicitly changed with another call
or until the connection object is destroyed.

The setting ANAME_ALLOW_DUPLICATES is only valid if the call is issued from
the ANAME administrator’s LU. See z/OS Communications Server APPC
Application Suite Administration for information on configuring the ANAME
administrator.

Format

Parameters
connection_id

(input) An ANAME connection object that was created by a previous
aname_create() call.

duplicate_flag
(input) Flag which is set to one of the following values to indicate whether a
duplicate user name may or may not be registered.
ANAME_ALLOW_DUPLICATES

A duplicate user name may be registered. This can only be set from the
system administrator’s LU.

ANAME_DISALLOW_DUPLICATES
A duplicate user name may not be registered. This is the default.

return_code
(output) See “Chapter 6. ANAME Return Codes” on page 151 for possible return
codes.

Example
{

ANAME_HANDLE_TYPE handle;
ANAME_RETURN_CODE_TYPE rc;
ANAME_DUP_FLAG_TYPE duplicate_flag = ANAME_ALLOW_DUPLICATES;

/*
* The following calls must be issued here:
* aname_create()
* an aname_set_xxx call (for example, aname_set_fqlu_name())
*/

aname_set_duplicate_register(

ANAME_ENTRY
aname_set_duplicate_register(

ANAME_HANDLE_TYPE connection_id,
ANAME_DUP_FLAG_TYPE duplicate_flag
ANAME_RETURN_CODE_TYPE ANAME_PTR return_code);

Chapter 5. ANAME API Call Reference 141

handle,
duplicate_flag,
&rc);

}

Line Flows
There are no line flows for this call.

142 z/OS V1R2.0 CS: APPC Application Suite Programming

aname_set_fqlu_name
Use this call to assign a value to the fully qualified LU name field of a data object
which will be sent to the ANAME server.

The fully qualified LU name field of the data object can be set for any query
request, but its use for register and delete requests is limited. The fully qualified LU
name of the user is automatically generated by ANAME during register and delete
operations. This value can be overridden only by an ANAME administrator. For
example, if a user other than the ANAME administrator issues this call to set the
fully qualified LU name and then issues an aname_register() call, the register call
will fail.

Format

Parameters
connection_id

(input) An ANAME connection object that was created by a previous
aname_create() call.

fqlu_name
(input) Value to be assigned to the fully qualified LU name field of the data
record to be sent to the ANAME server.

Use the ANAME_FQ_SIZE constant to define the length of this buffer. Add 1 to
the size if you want to be able to add a null terminator to the text in the buffer.

fqlu_name_length
(input) Length of the fqlu_name parameter that was supplied on this call.

return_code
(output) See “Chapter 6. ANAME Return Codes” on page 151 for possible return
codes.

Example
{

unsigned char fqlu_name[ANAME_FQ_SIZE + 1];
ANAME_HANDLE_TYPE handle;
ANAME_RETURN_CODE_TYPE rc;

/*
* The following call must be issued here:
* aname_create()
*/

strcpy(fqlu_name, "NET.LUA);
aname_set_fqlu_name(

handle,
fqlu_name,
strlen(fqlu_name),
&rc);

}

ANAME_ENTRY
aname_set_fqlu_name(

ANAME_HANDLE_TYPE connection_id,
unsigned char ANAME_PTR fqlu_name,
ANAME_LENGTH_TYPE fqlu_name_length,
ANAME_RETURN_CODE_TYPE ANAME_PTR return_code);

Chapter 5. ANAME API Call Reference 143

Line Flows
There are no line flows for this call.

144 z/OS V1R2.0 CS: APPC Application Suite Programming

aname_set_group_name
Use this call to assign a value to the group name field of the client data object
which will be sent to the ANAME server.

Format

Parameters
connection_id

(input) An ANAME connection object that was created by a previous
aname_create() call.

group_name
(input) Value to be assigned to the group name field of the data record to be
sent to the ANAME server.

Use the ANAME_GN_SIZE constant to define the length of this buffer. Add 1 to
the size if you want to be able to add a null terminator to the text in the buffer.

group_name_length
(input) Length of the group_name parameter that was supplied on this call.

return_code
(output) See “Chapter 6. ANAME Return Codes” on page 151 for possible return
codes.

Example
{

unsigned char group_name[ANAME_GN_SIZE + 1];
ANAME_HANDLE_TYPE handle;
ANAME_RETURN_CODE_TYPE rc;

/*
* The following call must be issued here:
* aname_create()
*/

strcpy(group_name, "GROUPA");
aname_set_group_name(

handle,
group_name,
strlen(group_name),
&rc);

}

Line Flows
There are no line flows for this call.

ANAME_ENTRY
aname_set_group_name(

ANAME_HANDLE_TYPE connection_id,
unsigned char ANAME_PTR group_name,
ANAME_LENGTH_TYPE group_name_length,
ANAME_RETURN_CODE_TYPE ANAME_PTR return_code);

Chapter 5. ANAME API Call Reference 145

aname_set_tp_name
Use this call to assign a value to the transaction program name field of the client
data object which will be sent to the ANAME server.

Note: This call does not set the TP name for the conversation. To set the TP name
for the conversation use the aname_set_destination() call.

Format

Parameters
connection_id

(input) An ANAME connection object that was created by a previous
aname_create() call.

tp_name
(input) Value to be assigned to the transaction program name field of the data
record to be sent to the ANAME server.

Use the ANAME_TP_SIZE constant to define the length of this buffer. Add 1 to
the size if you want to be able to add a null terminator to the text in the buffer.

tp_name_length
(input) Length of the tp_name parameter that was supplied on this call.

return_code
(output) See “Chapter 6. ANAME Return Codes” on page 151 for possible return
codes.

Example
{

unsigned char tp_name[ANAME_TP_SIZE + 1];
ANAME_HANDLE_TYPE handle;
ANAME_RETURN_CODE_TYPE rc;

/*
* The following call must be issued here:
* aname_create()
*/

strcpy(tp_name, "TPA");
aname_set_tp_name(

handle,
tp_name,
strlen(tp_name),
&rc);

}

Line Flows
There are no line flows for this call.

ANAME_ENTRY
aname_set_tp_name(

ANAME_HANDLE_TYPE connection_id,
unsigned char ANAME_PTR tp_name,
ANAME_LENGTH_TYPE tp_name_length,
ANAME_RETURN_CODE_TYPE ANAME_PTR return_code);

146 z/OS V1R2.0 CS: APPC Application Suite Programming

aname_set_trace_filename
Use this call to specify the name of the file to which trace output should be written.
The trace filename will remain until the application ends or until the trace filename
is reset to a different value with another aname_set_trace_filename() call. If trace is
turned on by the aname_set_trace_level() call and the aname_set_trace_filename()
call is not issued, the trace file generated will be:
v On VM: NUL TRC
v On MVS: DD:SYSOUT
v On OS/2: NUL.TRC

If the file does not exist, it will be created. If the file does exist, new data will be
appended to the end of the file.

Format

Parameters
trace_filename

(input) Name of the file to which trace information should be written.

return_code
(output) See “Chapter 6. ANAME Return Codes” on page 151 for possible return
codes.

{

ANAME_RETURN_CODE_TYPE rc;
unsigned char trace_filename[256 + 1];

/*
* The following call should be issued here:
* aname_set_trace_level()
*/

/*
* The file name to use for the trace log will vary by operating
* system, the following example is for OS/2
*/
strcpy(trace_filename, "TRACE.LOG");
aname_set_trace_filename(trace_filename, &rc);

}

Line Flows
There are no line flows for this call.

ANAME_ENTRY
aname_set_trace_filename(

unsigned char ANAME_PTR trace_filename,
ANAME_RETURN_CODE_TYPE ANAME_PTR return_code);

Chapter 5. ANAME API Call Reference 147

aname_set_trace_level
Use this call to define the amount of trace information that should be generated
while the program is running. This call can be issued at any time and does not
depend on any previous calls. The trace level will remain until the application ends
or until the trace level is reset to a different value with another
aname_set_trace_level() call.

Use the aname_set_trace_filename() call to identify the file to use to capture the
trace data.

Format

Parameters
trace_level

(input) The amount of trace information to be generated. The constants from
ANAME_LVL_NO_TRACING to ANAME_LVL_MAX_TRACE_LVL incrementally
increase the amount of trace information.
ANAME_LVL_NO_TRACING

No data will be written to the trace log.
ANAME_LVL_API

Traces crossings of the API boundary.
ANAME_LVL_MAX_TRACE_LVL

Provides the maximum amount of trace information.

Other trace levels are reserved for diagnosing problems with the assistance of
the IBM Support Center.

return_code
(output) See “Chapter 6. ANAME Return Codes” on page 151 for possible return
codes.

Example
{

ANAME_TRACE_LEVEL_TYPE trace_level = ANAME_LVL_API;

aname_set_trace_level(trace_level, &rc);
}

Line Flows
There are no line flows for this call.

ANAME_ENTRY
aname_set_trace_level(

ANAME_TRACE_LEVEL_TYPE trace_level,
ANAME_RETURN_CODE_TYPE ANAME_PTR return_code);

148 z/OS V1R2.0 CS: APPC Application Suite Programming

aname_set_user_name
Use this call to assign a value to the user name field of the client data object which
will be sent to the ANAME server.

Format

Parameters
connection_id

(input) An ANAME connection object that was created by a previous
aname_create() call.

user_name
(input) Value to be assigned to the user name field of the data record to be sent
to the ANAME server.

Use the ANAME_UN_SIZE constant to define the length of this buffer. Add 1 to
the size if you want to be able to add a null terminator to the text in the buffer.

user_name_length
(input) Length of the user_name parameter that was supplied on this call.

return_code
(output) See “Chapter 6. ANAME Return Codes” on page 151 for possible return
codes.

Example
{

unsigned char user_name[ANAME_UN_SIZE + 1];
ANAME_HANDLE_TYPE handle;
ANAME_RETURN_CODE_TYPE rc;
boolean error_flag = FALSE;

/*
* The following call must be issued here:
* aname_create()
*/

strcpy(user_name, "MYNAME");
aname_set_user_name(

handle,
user_name,
strlen(user_name),
&rc);

}

Line Flows
There are no line flows for this call.

ANAME_ENTRY
aname_set_user_name(

ANAME_HANDLE_TYPE connection_id,
unsigned char ANAME_PTR user_name,
ANAME_LENGTH_TYPE user_name_length,
ANAME_RETURN_CODE_TYPE ANAME_PTR return_code);

Chapter 5. ANAME API Call Reference 149

150 z/OS V1R2.0 CS: APPC Application Suite Programming

Chapter 6. ANAME Return Codes

These are the possible return codes that can be issued for each of the ANAME API
calls.

ANAME_RC_BUFFER_TOO_SMALL
The buffer supplied by the caller for output data was too small to hold the
data.

ANAME_RC_COMM_CONFIG_LOCAL
The call failed due to a local configuration error. Communications will fail
until the configuration problem is resolved.

ANAME_RC_COMM_CONFIG_REMOTE
The call failed due to a remote configuration error. Communications will fail
until the configuration problem is resolved.

ANAME_RC_COMM_FAIL_NO_RETRY
The call failed due to a communications problem. The call will not
successfully complete using the current parameters.

ANAME_RC_COMM_FAIL_RETRY
The call failed due to a communications problem. The call may successfully
complete if tried again.

ANAME_RC_FAIL_FATAL
A serious system error has occurred; no calls can complete successfully.

ANAME_RC_FAIL_INPUT_ERROR
The call may successfully complete after new input parameters are
supplied.

ANAME_RC_FAIL_NO_RETRY
The call will not successfully complete using the current parameters.

ANAME_RC_FAIL_RETRY
The call may successfully complete if tried again.

ANAME_RC_HANDLE_NOT_VALID
The call failed because the ANAME connection object passed into the
ANAME API was not valid.

ANAME_RC_OK
The call completed successfully.

ANAME_RC_PARAMETER_CHECK
The call failed due to an error in one of the parameters passed into the
ANAME API.

ANAME_RC_PROGRAM_INTERNAL_ERROR
The call failed due to a programming error.

ANAME_RC_RECORD_ALREADY_OWNED
The call failed because the user name supplied already exists in the
database in a record with a different LU name. The call might complete
successfully if another user name is supplied.

ANAME_RC_SECURITY_NOT_VALID
The call failed because of APPC security.

ANAME_RC_STATE_CHECK
The call failed because the current ANAME API call was made when
ANAME was not in the correct state required for the current call. For

© Copyright IBM Corp. 1994, 2001 151

example, you will get a state check error if you try to use
aname_format_error() when no error has occurred.

152 z/OS V1R2.0 CS: APPC Application Suite Programming

Part 3. Appendixes

© Copyright IBM Corp. 1994, 2001 153

154 z/OS V1R2.0 CS: APPC Application Suite Programming

Appendix A. Entry Point Mappings
Table 5. AFTP API Call Mappings
Call Name Entry Point
aftp_change_dir ftcd
aftp_close ftclose
aftp_connect ftconn
aftp_create ftcreate
aftp_create_dir ftcrtdir
aftp_delete ftdel
aftp_destroy ftdestry
aftp_dir_close ftdircls
aftp_dir_open ftdiropn
aftp_dir_read ftdirrd
aftp_extract_allocation_size fteas
aftp_extract_block_size ftebs
aftp_extract_data_type ftedt
aftp_extract_date_mode ftedm
aftp_extract_destination ftedst
aftp_extract_mode_name ftemn
aftp_extract_partner_LU_name fteplu
aftp_extract_password ftepw
aftp_extract_record_format fterf
aftp_extract_record_length fterl
aftp_extract_security_type ftest
aftp_extract_tp_name ftetpn
aftp_extract_trace_level ftetl
aftp_extract_userid fteui
aftp_extract_write_mode ftewm
aftp_format_error ftfe
aftp_get_data_type_string ftgdts
aftp_get_date_mode_string ftgdms
aftp_get_record_format_string ftgrfs
aftp_get_write_mode_string ftgwms
aftp_load_ini_file ftlif
aftp_local_change_dir ftlcd
aftp_local_dir_close ftldc
aftp_local_dir_open ftldo
aftp_local_dir_read ftldr
aftp_local_query_current_dir ftlqcd
aftp_query_bytes_transferred ftqbt
aftp_query_current_dir ftqcd
aftp_query_local_system_info ftqlsi
aftp_query_local_version ftqlv
aftp_query_system_info ftqsys
aftp_receive_file ftrecv
aftp_remove_dir ftrd
aftp_rename ftren
aftp_send_file ftsend
aftp_set_allocation_size ftsas
aftp_set_block_size ftsbs
aftp_set_data_type ftsdt
aftp_set_date_mode ftsdm
aftp_set_destination ftsdest
aftp_set_mode_name ftsmn

© Copyright IBM Corp. 1994, 2001 155

Table 5. AFTP API Call Mappings (continued)
Call Name Entry Point
aftp_set_password ftsp
aftp_set_record_format ftsrp
aftp_set_record_length ftsrl
aftp_set_security_type ftsst
aftp_set_tp_name ftstp
aftp_set_trace_filename ftstf
aftp_set_trace_level ftstl
aftp_set_userid ftsu
aftp_set_write_mode ftswm

Table 6. ANAME API Call Mappings
Function Name Entry Point
aname_create ancrt
aname_delete andel
aname_destroy andest
aname_extract_fqlu_name anefq
aname_extract_group_name anegn
aname_extract_tp_name anetp
aname_extract_user_name aneun
aname_format_error anferr
aname_query anqry
aname_receive anrcv
aname_register anreg
aname_set_destination ansdest
aname_set_duplicate_register ansdr
aname_set_fqlu_name ansfq
aname_set_group_name ansgn
aname_set_tp_name anstp
aname_set_trace_filename anstf
aname_set_trace_level anstl
aname_set_user_name ansun

156 z/OS V1R2.0 CS: APPC Application Suite Programming

Appendix B. Sample Program for AFTP API
/**
*
* PROGRAM: AFTP Sample Code
*
* COPYRIGHTS:
* This module contains code made available by IBM
* Corporation on an AS IS basis. Any one receiving the
* module is considered to be licensed under IBM copyrights
* to use the IBM-provided source code in any way he or she
* deems fit, including copying it, compiling it, modifying
* it, and redistributing it, with or without
* modifications. No license under any IBM patents or
* patent applications is to be implied from this copyright
* license.
*
* A user of the module should understand that IBM cannot
* provide technical support for the module and will not be
* responsible for any consequences of use of the program.
*
* Purpose : An example program to show a simple exercise of
* using the AFTP programming interface
*
* Function: Gets a single file from a remote machine. The user
* must know the machine name and the file name.
*
*
***/

/***
* System include files
***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/***
* AFTP API include file
***/

/*
* NOTE: If you want to use the header file as it was shipped, change
* this include statement to appfftp.h. Otherwise, rename the member
* appfftp.h to aftpapi.h for consistency with other platforms.
*/

#include "aftpapi.h"

int
main(int argc, char *argv[]) {

AFTP_HANDLE_TYPE connection_id; /* connection id */
AFTP_RETURN_CODE_TYPE aftp_rc; /* return code */
AFTP_SECURITY_TYPE sec_type; /* security type */
unsigned char * LU_name; /* partner LU name */
unsigned char * srcfilename; /* source file name */
unsigned char * destfilename; /* destination file name */

printf("\n");

if(argc != 4) {

printf("Usage : aget <LU name> <source filename>" \
" <destination filename> \n");

© Copyright IBM Corp. 1994, 2001 157

exit(-1);
}

/*
* NOTE: C/370 runtime treats backslashes as escape characters so
* you would specify a backslash character by typing double
* backslash characters. Alternatively, you could define the
* NO_ARGPARSE constant, use the runopts pragma, and parse the
* arguments yourself.
*/

LU_name = argv[1];
srcfilename = argv[2];
destfilename = argv[3];

/*
* Create the connection object
*/

aftp_create (connection_id, &aftp_rc);

if (aftp_rc != AFTP_RC_OK) {

printf ("Error creating connection object.\n");
exit (-1);

}

/*
* Set the partner LU name as the destination.
*/

aftp_set_destination (
connection_id,
(unsigned char AFTP_PTR)LU_name,
(AFTP_LENGTH_TYPE)strlen (LU_name),
&aftp_rc);

if(aftp_rc != AFTP_RC_OK) {

printf ("Error setting the destination.\n");
exit (-1);

}

/*
* Set the security to NONE unless you need security.
*/

aftp_set_security_type (
connection_id,
AFTP_SECURITY_NONE,
&aftp_rc);

if (aftp_rc == AFTP_RC_OK) {

printf ("Setting security type to NONE.\n");

}
else {

printf ("Error setting security type.\n");
}

/*
* Establish a connection with AFTPD server.
*/

aftp_connect (connection_id, &aftp_rc);

158 z/OS V1R2.0 CS: APPC Application Suite Programming

if (aftp_rc != AFTP_RC_OK) {

printf ("Error establishing the connection.\n");
exit (-1);

}

/*
* Set up file transfer mode.
*/

aftp_set_write_mode (
connection_id,
AFTP_REPLACE,
&aftp_rc);

if (aftp_rc != AFTP_RC_OK) {

printf ("Error setting write mode.\n");
}

/*
* Extract the security type and display it.
*/

aftp_extract_security_type (
connection_id,
&sec_type,
&aftp_rc);

if (aftp_rc == AFTP_RC_OK) {

printf ("Security type is : %lu\n", sec_type);
}
else {

printf ("Error extracting security type.\n");
}

/*
* Transfer the file from the server to the client.
*/

aftp_receive_file (
connection_id,
(unsigned char AFTP_PTR)destfilename,
(AFTP_LENGTH_TYPE)strlen (destfilename),
(unsigned char AFTP_PTR)srcfilename,
(AFTP_LENGTH_TYPE)strlen (srcfilename),
&aftp_rc);

if (aftp_rc == AFTP_RC_OK) {

printf ("File successfully transfered.\n");

}
else {

/*
* This is an example of how to show error reporting.
*/

AFTP_LENGTH_TYPE return_length;
char error_string[AFTP_MESSAGE_SIZE];

printf ("Error %lu transfering the file.\n", aftp_rc);

Appendix B. Sample Program for AFTP API 159

/*
* Specify a detail level according to how much information you
* want returned. In this case, return code information is
* requested.
*/

aftp_format_error (
connection_id,
(AFTP_DETAIL_LEVEL_TYPE)AFTP_DETAIL_RC,
(unsigned char AFTP_PTR)error_string,
(AFTP_LENGTH_TYPE)(sizeof (error_string)-1),
&return_length,
&aftp_rc);

/*
* Add a null terminator.
*/

error_string[return_length] = '\0';
printf ("%s", error_string);

}

/*
* Close a connection with AFTPD server.
*/

aftp_close (connection_id, &aftp_rc);

if (aftp_rc != AFTP_RC_OK) {

printf ("Error closing the connection.\n");
exit (-1);

}

/*
* Destroy the connection id.
*/

aftp_destroy (connection_id, &aftp_rc);

if (aftp_rc != AFTP_RC_OK) {

printf ("Error destroying the connection id.\n");
exit (-1);

}

return(0);
} /* END SAMPLE PROGRAM */

160 z/OS V1R2.0 CS: APPC Application Suite Programming

Appendix C. Sample Program for ANAME API
/**
*
* PROGRAM: APPC NameServer Sample code
*
* COPYRIGHTS:
* This module contains code made available by IBM
* Corporation on an AS IS basis. Any one receiving the
* module is considered to be licensed under IBM copyrights
* to use the IBM-provided source code in any way he or she
* deems fit, including copying it, compiling it, modifying
* it, and redistributing it, with or without
* modifications. No license under any IBM patents or
* patent applications is to be implied from this copyright
* license.
*
* A user of the module should understand that IBM cannot
* provide technical support for the module and will not be
* responsible for any consequences of use of the program.
*
* Purpose : An example program to show a simple exercise of
* using the ANAME programming interface
*
* Function: Registers, Queries and Deletes a record using the ANAME
* API.
*
* Notes: The FQLU_NAME #define variable will work only if you are a
* system administrator. You MUST change this to be equal to
* your fully qualified LU name before you try running this or
* you will get an error message when you try running this
* program.
*
* The user should also replace "SampleName", "SampleGroup",
* and "SampleTP" in the local type and constant definitions
* section below with a user name, group name and TP name.
*
**/

/***
* System include files
***/

#include <stdio.h>
#include <string.h>

/***
* ANAME API include file
***/

/*
* NOTE: If you want to use the header file as it was shipped, change
* this include statement to appmapi.h. Otherwise, rename the member
* appmapi.h to anameapi.h for consistency with other platforms.
*/

#include "anameapi.h"

/***
* Local type and constant definitions
***/

typedef unsigned short boolean;

#ifndef TRUE
#define TRUE ((boolean) (1))

© Copyright IBM Corp. 1994, 2001 161

#endif

#ifndef FALSE
#define FALSE ((boolean) (0))
#endif

/**
* ### WARNING ### - You MUST change SAMPLE.LU to your fully-qualified
* LU name for this to work!
**/

#define FQLU_NAME "SAMPLE.LU"

#define USER_NAME "SampleName" /* Set your User Name here */
#define GROUP_NAME "SampleGroup" /* Set your Group Name here */
#define TP_NAME "SampleTP" /* Set your TP Name here */

void
main(void) {

/*
* Buffers storing values to query
*/

unsigned char user_name[ANAME_UN_SIZE + 1];
unsigned char fqlu_name[ANAME_FQ_SIZE + 1];
unsigned char group[ANAME_GN_SIZE + 1];
unsigned char tpname[ANAME_TP_SIZE + 1];

/*
* Length of values entered by user
*/

ANAME_LENGTH_TYPE user_name_length = 0;
ANAME_LENGTH_TYPE fqlu_name_length = 0;
ANAME_LENGTH_TYPE group_length = 0;
ANAME_LENGTH_TYPE tpname_length = 0;

/*
* Buffer to store error string returned from aname_format_error
*/

unsigned char message[2048];
ANAME_LENGTH_TYPE message_len_in =

(ANAME_LENGTH_TYPE)sizeof(message);
ANAME_LENGTH_TYPE message_len_out = 0;

/*
* Type of information requested from aname_format_error
*/

ANAME_DETAIL_LEVEL_TYPE detail_level = ANAME_DETAIL_ALL;

/*
* Parameter required for all ANAME calls
*/

ANAME_HANDLE_TYPE handle;

/*
* Return Code from ANAME calls
*/

ANAME_RETURN_CODE_TYPE rc;

/*
* Data indicator for aname_receive call.

162 z/OS V1R2.0 CS: APPC Application Suite Programming

*/

ANAME_DATA_RECEIVED_TYPE data_received = 0;

/*
* Flag indicating error condition.
*/

boolean error_flag = FALSE;

/*
* Create ANAME handle. If error, get eror information
* display to user. Program ends on error.
*/

aname_create(handle, &rc);

if (rc == ANAME_RC_OK) {

/*
* Let's do a Register CALL, First well set up some fields
*/

strcpy(user_name, USER_NAME); /* Set User name */
strcpy(fqlu_name, FQLU_NAME); /* Set FQLU name */
strcpy(group, GROUP_NAME); /* Set Group name */
strcpy(tpname, TP_NAME); /* Set TP name */

/*
* Set the User_name, the Group name and the transaction
* program name. Check the return code each step of the way.
*/

aname_set_user_name(
handle,
user_name,
strlen(user_name),
&rc);

if (rc == ANAME_RC_OK) {

aname_set_group_name(
handle,
group,
strlen(group),
&rc);

if (rc == ANAME_RC_OK) {

aname_set_tp_name(
handle,
tpname,
strlen(tpname),
&rc);

if (rc == ANAME_RC_OK) {

aname_register(handle, &rc);

if (rc == ANAME_RC_OK) {

/*
* Show what we have just registered
* successfully.
*/

printf("\nRegister was successful for :\n");

Appendix C. Sample Program for ANAME API 163

printf("\n User Name: %s", user_name);
printf("\n Group: %s", group);
printf("\n TP Name: %s", tpname);
printf("\n\n");

} /* end if register succeeded */

} /* end if set tp name succeeded */

} /* end if set group name succeeded */

} /* end if set user name succeeded */

if (rc != ANAME_RC_OK) {

error_flag = TRUE;

aname_format_error(
handle,
detail_level,
message,
message_len_in,
&message_len_out,
&rc);

if (rc == ANAME_RC_OK) { /* Success on format_error */

printf("\n***************** ");
printf("ERROR MESSAGE");
printf(" *****************\n");
printf("%s\n",message);
printf("\n***************************");
printf("**********************\n\n\n");

}
else {

printf("\naname_format_error failed. RC = %d\n",rc);
}

aname_destroy(handle, &rc);

} /* end if something failed after the create */

else {

/*
* IF the Register all WORKED Now lets do a Query to see
* what was put into the Data Base. We DON'T have to do
* any SET calls since we will be using the same "handle"
* that was used in the register call and all the fields
* are set the way we want them.
*/

aname_query(handle, &rc);

if (rc == ANAME_RC_OK) {

/*
* The Query was GOOD! Receive the data returned from
* the NameServer. Extract the User_name, the FQLU_name,
* the Group name and the TP_names so that you may
* display them.
*/

printf("\n********** Query was successful *********\n");

do {

164 z/OS V1R2.0 CS: APPC Application Suite Programming

/*
* Receive a record of data.
*/

aname_receive(handle, &data_received, &rc);

if ((rc == ANAME_RC_OK) &&;
(data_received == ANAME_DR_DATA_RECEIVED_OK)) {

memset(user_name, 0, ANAME_UN_SIZE + 1);
memset(fqlu_name, 0, ANAME_FQ_SIZE + 1);
memset(group, 0, ANAME_GN_SIZE + 1);
memset(tpname, 0, ANAME_TP_SIZE + 1);

user_name_length = 0;
fqlu_name_length = 0;
group_length = 0;
tpname_length = 0;

/*
* Extract the user name.
*/

aname_extract_user_name(
handle,
user_name,
ANAME_UN_SIZE,
&user_name_length,
&rc);

if (rc == ANAME_RC_OK) {

/*
* Extract the fully-qualified LU name.
*/

aname_extract_fqlu_name(
handle,
fqlu_name,
ANAME_FQ_SIZE,
&fqlu_name_length,
&rc);

if (rc == ANAME_RC_OK) {

/*
* Extract the group name.
*/

aname_extract_group_name(
handle,
group,
ANAME_GN_SIZE,
&group_length,
&rc);

if (rc == ANAME_RC_OK) {

/*
* Extract the tp name.
*/

aname_extract_tp_name(
handle,
tpname,
ANAME_TP_SIZE,

Appendix C. Sample Program for ANAME API 165

&tpname_length,
&rc);

if (rc == ANAME_RC_OK) {
/*
* Append nuls for printing
*/

user_name[user_name_length] =
'\0';

fqlu_name[fqlu_name_length] =
'\0';

group[group_length] =
'\0';

tpname[tpname_length] =
'\0';

printf("\n");
printf(

"\n User Name: %s",
user_name);

printf(
"\n FQ LU Name: %s",
fqlu_name);

printf(
"\n Group: %s",
group);

printf(
"\n TP Name: %s",
tpname);

} /* end if ext tp name succeeded */

} /* end if ext group name succeeded */

} /* end if extract fqlu name succeeded */

} /* end if extract user name succeeded */

} /* end if receive succeeded */

} while (((rc == ANAME_RC_OK) &&;
(data_received == ANAME_DR_DATA_RECEIVED_OK)) &&;
(!error_flag));

/*
* Make sure we ended the LOOP OK with no more data
* from the QUERY.
*/

if (data_received == ANAME_DR_NO_MORE_DATA) {

printf("\n**************************");
printf("***********************\n\n\n");

}
} /* End IF ok to receive data */

} /* end if query succeeded */

/*
* Let's delete the record that we just have created if no
* errors occurred previously. All the values are still
* set in the connection object so we don't have to reset them.
*/

if (!error_flag && rc == ANAME_RC_OK) {

aname_delete(handle, &rc);

166 z/OS V1R2.0 CS: APPC Application Suite Programming

if (rc == ANAME_RC_OK) {

printf("\n********** Delete was successful for :");
printf(" **********\n");
printf("\n User Name: %s", user_name);
printf("\n FQ LU Name: %s", fqlu_name);
printf("\n Group: %s", group);
printf("\n TP Name: %s", tpname);
printf("\n***********************************");
printf("**************\n\n\n");

}
else {

printf("\naname_delete failed. ");
printf("RC = %d\n",rc);
error_flag = TRUE;

}
}

/*
* Before leaving: If there was an error display error info
* to the user.
*/

if (error_flag) {

aname_format_error(
handle,
detail_level,
message,
message_len_in,
&message_len_out,
&rc);

if (rc == ANAME_RC_OK) {
printf("\n***************** ERROR MESSAGE ");
printf("*****************\n");
printf("%s\n",message);
printf("\n********************************");
printf("*****************\n\n\n");

}
else {

printf("\naname_format_error failed with an RC = %d\n",
rc);

}
} /* End If: Everything is still OK */

/*
* Destroy the handle created. If error, display error info
* to the user. Program ends on error.
*/

aname_destroy(handle, &rc);

if (rc != ANAME_RC_OK) {

printf("\naname_destroy failed. RC = %d\n",rc);

aname_format_error(
handle,
detail_level,
message,
message_len_in,
&message_len_out,

Appendix C. Sample Program for ANAME API 167

&rc);

if (rc == ANAME_RC_OK) {
printf("\n***************** ERROR MESSAGE ");
printf("*****************\n");
printf("%s\n",message);
printf("\n*******************************");
printf("******************\n\n\n");

}
else {

printf("\naname_format_error failed. RC = %d\n",rc);
}

}

} /* End if: aname_create worked */

return;
} /* END SAMPLE PROGRAM */

168 z/OS V1R2.0 CS: APPC Application Suite Programming

Appendix D. Information Apars

This appendix lists information apars for IP and SNA books.

Notes:

1. Information apars contain updates to previous editions of the manuals listed
below. Books updated for V1R2 are complete except for the updates contained
in the information apars that may be issued after V1R2 books went to press.

2. Information apars are predefined for z/OS V1R2 Communications Server and
may not contain updates.

IP Information Apars
Table 7 lists information apars for IP books.

Table 7. IP Information Apars

Title z/OS CS
V1R2

CS for
OS/390 2.10

and

z/OS CS
V1R1

CS for
OS/390 2.8

CS for
OS/990 2.7

CS for
OS/390 2.6

CS for
OS/390 2.5

IP API Guide ii12861 ii12371 ii11635 ii11558 ii11405 ii11144

IP CICS Sockets
Guide

ii12862 ii11626 ii11559 ii11406 ii11145

IP Configuration ii11620
ii12068
ii12353
ii12649

ii11555
ii11637
ii11995
ii12325

ii11402
ii11619
ii12066
ii12455

ii11159
ii11979
ii12315

IP Configuration Guide ii12498 ii12362
ii12493

IP Configuration
Reference

ii12499 ii12363
ii12494
ii12712

IP Diagnosis ii12503 ii12366
ii12495

ii11628 ii11565 ii11411 ii11160
ii11414

IP Messages Volume
1

ii12857 ii12367 ii11630 ii11562 ii11408 ii11636

IP Messages Volume
2

ii12858 ii12368 ii11631 ii11563 ii11409 ii11281

IP Messages Volume
3

ii12859 ii12369 ii11632
ii12883

ii11564
ii12884

ii11410
ii12885

ii11158

IP Messages Volume
4

ii12860

IP Migration ii12497 ii12361 ii11618 ii11554 ii11401 ii11204

IP Network Print
Facility

ii12864 ii11627 ii11561 ii11407 ii11150

IP Programmer’s
Reference

ii12505 ii11634 ii11557 ii11404 ii12496

© Copyright IBM Corp. 1994, 2001 169

|

|

|
|

|
|

Table 7. IP Information Apars (continued)

Title z/OS CS
V1R2

CS for
OS/390 2.10

and

z/OS CS
V1R1

CS for
OS/390 2.8

CS for
OS/990 2.7

CS for
OS/390 2.6

CS for
OS/390 2.5

IP and SNA Codes ii12504 ii12370 ii11917 Added
TCP/IP codes
to VTAM
codes V2R6
ii11611

ii11361 ii11146
ii11097

IP User’s Guide ii12365 ii11625 ii11556 ii11403 ii11143

IP User’s Guide and
Commands

ii12501

IP System Admin
Guide

ii12502

Quick Reference ii12500 ii12364

SNA Information Apars
Table 8 lists information apars for SNA books.

Table 8. SNA Information Apars

Title z/OS CS
V1R2

CS for
OS/390 2.10

and z/OS
CS V1R1

CS for
OS/390 2.8

CS for
OS/390 2.7

CS for
OS/390 2.6

CS for
OS/390 2.5

Anynet SNA over TCP/IP ii11922 ii11633 ii11624 ii11623

Anynet Sockets over SNA ii11921 ii11622 ii11519 ii11518

CSM Guide

IP and SNA Codes ii12370 ii11917 ii11611 ii11361 ii11097

SNA Customization ii12872 ii12388 ii11923 ii11925
ii12008

ii11924
ii12007

ii11092
ii11621
ii12006

SNA Diagnosis ii12490 ii12389 ii11915 ii11615 ii11357 ii11585

SNA Messages ii12491 ii12382 ii11916 ii11610 ii11358 ii11096

SNA Network
Implementation Guide

ii12487 ii12381 ii11911 ii11609
ii12683

ii11353
ii11493

ii11095

SNA Operation ii12489 ii12384 ii11914 ii11612 ii11355 ii11098

SNA Migration ii12486 ii12386 ii11910 ii11614 ii11359 ii11100

SNA Programming ii12385 ii11920 ii11613 ii11360 ii11099

Quick Reference ii12500 ii12364 ii11913 ii11616 ii11356

SNA Resource Definition
Reference

ii12488 ii12380
ii12567

ii11912
ii12568

ii11608
ii12569

ii11354
ii12259
ii12570

ii11094
ii11151
ii12260
ii12571

SNA Resource Definition
Samples

170 z/OS V1R2.0 CS: APPC Application Suite Programming

Appendix E. Notices

IBM may not offer all of the products, services, or features discussed in this
document. Consult your local IBM representative for information on the products
and services currently available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and verify the operation
of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1994, 2001 171

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

Site Counsel
IBM Corporation
P.O.Box 12195
3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly

172 z/OS V1R2.0 CS: APPC Application Suite Programming

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

This product includes cryptographic software written by Eric Young.

If you are viewing this information softcopy, photographs and color illustrations may
not appear.

You can obtain softcopy from the z/OS Collection (SK3T-4269), which contains
BookManager and PDF formats of unlicensed books and the z/OS Licensed
Product Library (LK3T-4307), which contains BookManager and PDF formats of
licensed books.

Appendix E. Notices 173

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

ACF/VTAM
Advanced Peer-to-Peer Networking
AFP
AD/Cycle
AIX
AIX/ESA
AnyNet
APL2
APPN
AS/400
AT
BookManager
BookMaster
CBPDO
C/370
CICS
CICS/ESA
C/MVS
Common User Access
C Set ++
CT
CUA
DATABASE 2
DatagLANce
DB2
DFSMS
DFSMSdfp
DFSMShsm
DFSMS/MVS
DPI
Domino
DRDA
eNetwork
Enterprise Systems Architecture/370
ESA/390
ESCON
Eserver
ES/3090
ES/9000
ES/9370
EtherStreamer
Extended Services
FAA

Micro Channel
MVS
MVS/DFP
MVS/ESA
MVS/SP
MVS/XA
MQ
Natural
NetView
Network Station
Nways
Notes
NTune
NTuneNCP
OfficeVision/MVS
OfficeVision/VM
Open Class
OpenEdition
OS/2
OS/390
OS/400
Parallel Sysplex
Personal System/2
PR/SM
PROFS
PS/2
RACF
Resource Link
Resource Measurement Facility
RETAIN
RFM
RISC System/6000
RMF
RS/6000
S/370
S/390
SAA
SecureWay
Slate
SP
SP2
SQL/DS
System/360

174 z/OS V1R2.0 CS: APPC Application Suite Programming

FFST
FFST/2
FFST/MVS
First Failure Support Technology
GDDM
Hardware Configuration Definition
IBM
IBMLink
IBMLINK
IMS
IMS/ESA
InfoPrint
Language Environment
LANStreamer
Library Reader
LPDA
MCS

System/370
System/390
SystemView
Tivoli
TURBOWAYS
UNIX System Services
Virtual Machine/Extended Architecture
VM/ESA
VM/XA
VSE/ESA
VTAM
WebSphere
XT
z/Architecture
z/OS
zSeries
400
3090
3890

Lotus, Freelance, and Word Pro are trademarks of Lotus Development Corporation
in the United States, or other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States, or
other countries, or both.

DB2 and NetView are registered trademarks of International Business Machines
Corporation or Tivoli Systems Inc. in the U.S., other countries, or both.

The following terms are trademarks of other companies:

ATM is a trademark of Adobe Systems, Incorporated.

BSC is a trademark of BusiSoft Corporation.

CSA is a trademark of Canadian Standards Association.

DCE is a trademark of The Open Software Foundation.

HYPERchannel is a trademark of Network Systems Corporation.

UNIX is a registered trademark in the United States, other countries, or both and is
licensed exclusively through X/Open Company Limited.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ActionMedia, LANDesk, MMX, Pentium, and ProShare are trademarks of Intel
Corporation in the United States, other countries, or both. For a complete list of
Intel trademarks, see http://www.intel.com/tradmarx.htm.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix E. Notices 175

http://www.intel.com/tradmarx.htm

176 z/OS V1R2.0 CS: APPC Application Suite Programming

Index

A
AFTP API

compiling
MVS 5, 119
VM 5, 119

conventions 4
defined constants 3
description 3
sample program 157
standard types 3

AFTP API Calls
aftp_change_dir 14
aftp_close 16
aftp_connect 17
aftp_create 18
aftp_create_dir 19
aftp_delete 21
aftp_destroy 23
aftp_dir_close 24
aftp_dir_open 25
aftp_dir_read 27
aftp_extract_allocation_size 30
aftp_extract_block_size 31
aftp_extract_data_type 32
aftp_extract_date_mode 33
aftp_extract_destination 34
aftp_extract_mode_name 36
aftp_extract_partner_LU_name 38
aftp_extract_password 40
aftp_extract_record_format 42
aftp_extract_record_length 44
aftp_extract_security_type 45
aftp_extract_tp_name 47
aftp_extract_trace_level 49
aftp_extract_userid 50
aftp_extract_write_mode 52
aftp_format_error 53, 55
aftp_get_date_mode_string 57
aftp_get_record_format_string 59
aftp_get_write_mode_string 61
aftp_load_ini_file 63
aftp_local_change_dir 65
aftp_local_dir_close 67
aftp_local_dir_open 68
aftp_local_dir_read 70
aftp_local_query_current_di 73
aftp_query_bytes_transferred 75
aftp_query_current_dir 76
aftp_query_local_system_info 78
aftp_query_local_version 80
aftp_query_system_info 81
aftp_receive_file 83
aftp_remove_dir 85
aftp_rename 87
aftp_send_file 89
aftp_set_allocation_size 91
aftp_set_block_size 92

AFTP API Calls (continued)
aftp_set_data_type 93
aftp_set_date_mode 95
aftp_set_destination 96
aftp_set_mode_name 98
aftp_set_password 99
aftp_set_record_format 101
aftp_set_record_length 103
aftp_set_security_type 104
aftp_set_tp_name 106
aftp_set_trace_filename 108
aftp_set_trace_level 109
aftp_set_userid 110
aftp_set_write_mode 112
connection object 6
controlling trace information 10
entry point mappings 155
generating message strings 10
listing files

on client 9
on server 8

loading initialization file 11
managing connections 6
managing directories 9
managing files 10
overview 5
query connections 7
query file transfer characteristics 8
query system 10
Return Codes 113
specifining file transfer characteristics

binary 7
text 7

transfering files 7
aftp_change_dir 14
aftp_close 16
aftp_connect 17
aftp_create 18
aftp_create_dir 19
aftp_delete 21
aftp_destroy 23
aftp_dir_close 24
aftp_dir_open 25
aftp_dir_read 27
aftp_entry 5
aftp_extract_allocation_size 30
aftp_extract_block_size 31
aftp_extract_data_type 32
aftp_extract_date_mode 33
aftp_extract_destination 34
aftp_extract_mode_name 36
aftp_extract_partner_LU_name 38
aftp_extract_password 40
aftp_extract_record_format 42
aftp_extract_record_length 44
aftp_extract_security_type 45
aftp_extract_tp_name 47
aftp_extract_trace_level 49

© Copyright IBM Corp. 1994, 2001 177

aftp_extract_userid 50
aftp_extract_write_mode 52
aftp_format_error 53, 55
aftp_get_date_mode_string 57
aftp_get_record_format_string 59
aftp_get_write_mode_string 61
aftp_load_ini_file 63
aftp_local_change_dir 65
aftp_local_dir_close 67
aftp_local_dir_open 68
aftp_local_dir_read 70
aftp_local_query_current_dir 73
aftp_ptr 5
aftp_query_bytes_transferred 75
aftp_query_current_dir 76
aftp_query_local_system_info 78
aftp_query_local_version 80
aftp_query_system_info 81
aftp_receive_file 83
aftp_remove_dir 85
aftp_rename 87
aftp_send_file 89
aftp_set_allocation_size 91
aftp_set_block_size 92
aftp_set_data_type 93
aftp_set_date_mode 95
aftp_set_destination 96
aftp_set_mode_name 98
aftp_set_password 99
aftp_set_record_format 101
aftp_set_record_length 103
aftp_set_security_type 104
aftp_set_tp_name 106
aftp_set_trace_filename 108
aftp_set_trace_level 109
aftp_set_userid 110
aftp_set_write_mode 112
ANAME API

conventions 118
defined constants 117
overview 117
sample program 161
standard types 118

ANAME API Calls
accessing returned records 122
aname_create 124
aname_delete 125
aname_destroy 126
aname_extract_fqlu_name 127
aname_extract_group_name 129
aname_extract_tp_name 131
aname_extract_user_name 133
aname_format_error 135
aname_query 137
aname_register 139
aname_set_destination 140
aname_set_duplicate_register 141
aname_set_fqlu_name 143
aname_set_group_name 145
aname_set_tp_name 146
aname_set_trace_filename 147

ANAME API Calls (continued)
aname_set_trace_level 148
aname_set_user_name 149
connection object 120
database records

adding 121
obtaining 121
removing 121

entry point mappings 156
obtaining error information 122
overview 120
Return Codes 151
setting data object values 120
setting destination name 120
system administrator functions 122
tracing 122

aname_create 124
aname_delete 125
aname_destroy 126
aname_extract_fqlu_name 127
aname_extract_group_name 129
aname_extract_tp_name 131
aname_extract_user_name 133
aname_format_error 135
aname_query 137
aname_register 139
aname_set_destination 140
aname_set_duplicate_register 141
aname_set_fqlu_name 143
aname_set_group_name 145
aname_set_tp_name 146
aname_set_trace_filename 147
aname_set_trace_level 148
aname_set_user_name 149
APPC File Transfer Protocol 3

C
Call Reference, API 123

N
null-terminated strings 4

R
Return Codes 151

178 z/OS V1R2.0 CS: APPC Application Suite Programming

Readers’ Comments — We’d Like to Hear from You

z/OS Communications Server
APPC Application Suite Programming
Version 1 Release 2

Publication No. SC31-8834-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC31-8834-00

SC31-8834-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Software Reengineering
Department G7IA/ Bldg 503
Research Triangle Park, NC
27709-9990

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC31-8834-00

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
z/

O
S

Co
m

m
un

ic
at

io
ns

Se
rv

er
z/

O
S

V
1R

2.
0

C
S:

A
PP

C
Ap

pl
ic

at
io

n
Su

ite
Pr

og
ra

m
m

in
g

Ve
rs

io
n

1
R

el
ea

se
2

	Contents
	Tables
	About This Book
	Where to Find More Information
	Where to Find Related Information on the Internet
	DNS Web Sites

	Licensed Documents
	LookAt, an Online Message Help Facility
	How to Contact IBM® Service
	z/OS Communications Server Information
	Softcopy Information
	z/OS Communications Server Library
	Redbooks
	Related Information
	Determining If a Publication Is Current

	Summary of Changes
	Part 1. APPC File Transfer Protocol (AFTP) Programming Interface
	Chapter 1. API for APPC File Transfer Protocol
	AFTP Defined Constants, Standard Types and Conventions
	Defined Constants
	Standard Types
	Conventions
	Null-Terminated Strings
	AFTP_ENTRY
	AFTP_PTR

	Compiling the AFTP Application
	MVS
	VM

	Overview of API Calls
	Create or Destroy an AFTP Connection Object
	Establish a Connection to the AFTP Server Computer
	Query Connection Characteristics
	Transfer Files
	Specify File Transfer Characteristics
	Query File Transfer Characteristics
	List Files on the AFTP Server Computer
	List Files on the AFTP Client Computer
	Perform Directory Manipulation
	Perform File Manipulation
	Query System Information
	Generate Message Strings
	Control Trace Information
	Miscellaneous

	Chapter 2. AFTP API Call Reference
	aftp_change_dir
	aftp_close
	aftp_connect
	aftp_create
	aftp_create_dir
	aftp_delete
	aftp_destroy
	aftp_dir_close
	aftp_dir_open
	aftp_dir_read
	aftp_extract_allocation_size
	aftp_extract_block_size
	aftp_extract_data_type
	aftp_extract_date_mode
	aftp_extract_destination
	aftp_extract_mode_name
	aftp_extract_partner_LU_name
	aftp_extract_password
	aftp_extract_record_format
	aftp_extract_record_length
	aftp_extract_security_type
	aftp_extract_tp_name
	aftp_extract_trace_level
	aftp_extract_userid
	aftp_extract_write_mode
	aftp_format_error
	aftp_get_data_type_string
	aftp_get_date_mode_string
	aftp_get_record_format_string
	aftp_get_write_mode_string
	aftp_load_ini_file
	aftp_local_change_dir
	aftp_local_dir_close
	aftp_local_dir_open
	aftp_local_dir_read
	aftp_local_query_current_dir
	aftp_query_bytes_transferred
	aftp_query_current_dir
	aftp_query_local_system_info
	aftp_query_local_version
	aftp_query_system_info
	aftp_receive_file
	aftp_remove_dir
	aftp_rename
	aftp_send_file
	aftp_set_allocation_size
	aftp_set_block_size
	aftp_set_data_type
	aftp_set_date_mode
	aftp_set_destination
	aftp_set_mode_name
	aftp_set_password
	aftp_set_record_format
	aftp_set_record_length
	aftp_set_security_type
	aftp_set_tp_name
	aftp_set_trace_filename
	aftp_set_trace_level
	aftp_set_userid
	aftp_set_write_mode

	Chapter 3. AFTP Return Codes
	Part 2. APPC Name Server (ANAME) Programming Interface
	Chapter 4. API for the APPC NameServer
	How the ANAME API Works
	ANAME Defined Constants, Standard Types, and Conventions
	Defined Constants
	Standard Types
	Conventions
	Null-Terminated Strings
	ANAME_ENTRY
	ANAME_PTR

	Compiling the ANAME Application
	MVS
	VM

	Overview of API Calls
	Create or Destroy an ANAME Connection Object
	Set Values in the Connection Object
	Set Values in the Data Object
	Add a Record to the Database
	Remove Records from the Database
	Obtain Records from the Database
	Access Values in Returned Records
	Obtain Error Information
	Turn Tracing On and Off
	Use System Administrator Functions

	Chapter 5. ANAME API Call Reference
	aname_create
	aname_delete
	aname_destroy
	aname_extract_fqlu_name
	aname_extract_group_name
	aname_extract_tp_name
	aname_extract_user_name
	aname_format_error
	aname_query
	aname_receive
	aname_register
	aname_set_destination
	aname_set_duplicate_register
	aname_set_fqlu_name
	aname_set_group_name
	aname_set_tp_name
	aname_set_trace_filename
	aname_set_trace_level
	aname_set_user_name

	Chapter 6. ANAME Return Codes
	Part 3. Appendixes
	Appendix A. Entry Point Mappings
	Appendix B. Sample Program for AFTP API
	Appendix C. Sample Program for ANAME API
	Appendix D. Information Apars
	IP Information Apars
	SNA Information Apars

	Appendix E. Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

